SYMPLECTIC GEOMETRY, LECTURE 25

Prof. Denis Auroux

1. Spin Structures

Let (X^4, g) be an oriented Riemannian manifold, $S = S_+ \oplus S_- \to X$ a spin^c structure with Clifford multiplication $\gamma : T^*X \otimes S \to S$.

Example. If X is almost-complex, $S_+ = (\bigwedge^{0,0} \otimes E) \oplus (\bigwedge^{0,2} \otimes E), S_- = (\bigwedge^{0,1} \otimes E), \gamma(u) = \sqrt{2}[u^{0,1} \wedge \cdot - \iota_{(u^{1,0})^{\#}} \cdot].$ As defined last time, $L = \det(S_+) = \det(S_-) = K_X^{-1} \otimes E^2.$

As we stated last time, the Clifford multiplication extends to differential forms with $\bigwedge_{+}^{2} \cong \operatorname{End}_{TLAH}(S^{+})$ (where the latter group is the space of traceless, anti-hermitian endomorphisms). We also have the Dirac operator associated to a spin^c connection ∇^{A} on S:

(1)
$$D_A: \Gamma(S^{\pm}) \to \Gamma(S^{\mp}), D_A \psi = \sum_i \gamma(e^i)(\nabla_{e_i}^A \psi)$$

Example. If X is Kähler, the spin^c connection is induced by ∇_a connection on E, and $D_A = \sqrt{2}(\overline{\partial}_a + \overline{\partial}_a^*)$.

Example. $\nabla^A = \nabla^{A_0} + ia \otimes id$ on S_{\pm} for $a \in \Omega^1$ corresponding to $A = A_0 + 2ia$ on L. The associated decomposition of the Dirac operator is $D_A = D_{A_0} + \gamma(a)$.

2. Seiberg-Witten Equations

Definition 1. The Seiberg-Witten equations are the equations

(2)
$$D_A \psi = 0 \in \Gamma(S^-)$$
$$\gamma(F_A^+) = (\psi^* \otimes \psi)_0 [+\gamma(\mu)] \in \Gamma(\text{End}(S^+))$$

where A is a Hermitian connection on $L = \bigwedge^2 S^{\pm}$ (corresponding to a spin^c connection ∇^A), $\psi \in \Gamma(S+)$ is a section, $F_A^+ = \frac{1}{2}(F_A + *F_A) \in i\Omega_+^2$ for $F_A \in i\Omega^2$ the curvature of A, $(\psi^* \otimes \psi)_0$ is the traceless part of $\psi^* \otimes \psi$, and μ is an imaginary self-dual form fixed in advance.

Now, there exists an ∞ -dimensional group of symmetries preserving solutions, called the gauge group $\mathcal{G} = C^{\infty}(X, S^1)$ where $f \in C^{\infty}(X, S^1)$ acts by

$$(3) (A, \psi) \mapsto (A - 2df \cdot f^{-1}, f\psi)$$

Proposition 1. This preserves the solution space, and the action of \mathcal{G} is free unless $\psi \equiv 0$ (reducible solutions), where $\operatorname{Stab}((A,0)) \cong S^1$ is the space of constant maps.

Reducible solutions can happen $\Leftrightarrow F_A^+ = \mu$ has a solution $\Leftrightarrow (g,\mu)$ lie in a codimension b_2^+ subspace. Thus, we want to assume $b_2^+(X) \ge 1$, and (g,μ) generic. Note that, for $\mu = 0$, $F_A^+ = 0 \Leftrightarrow \frac{i}{2\pi}F_A$ is closed and antiselfdual in the class $c_1(L) \in \mathcal{H}_-^2 \subset \mathcal{H}_-^2 \oplus \mathcal{H}_+^2 = H^2$.

Definition 2. The moduli space of solutions $\mathcal{M}(S,q,\mu)$ is the set of solutions modulo \mathcal{G} .

Theorem 1. For (g, μ) generic, \mathcal{M} (if nonempty) is a smooth, compact, orientable manifold of dimension

(4)
$$d(S) = \frac{1}{4}(c_1(L)^2 \cdot [X] - (2\chi + 3\sigma))$$

Idea: We want to understand, given a solution (A_0, ψ_0) to the SW equations, the nearby solutions to the same equations. We linearize the SW equations, and let $(a, \phi) \in \Omega^1(X, i\mathbb{R}) \times C^{\infty}(S^+)$ be a small change in the solution, obtaining

(5)
$$P_1: (a,\phi) \mapsto D_{A_0}\phi + \gamma(a)\psi_0$$

as the linearization of the first equation and

(6)
$$P_2: (a, \phi) \mapsto \gamma((da)^+) - (\phi \otimes \psi_0^* + \psi_0 \otimes \phi^*)_0$$

as the linearization of the second equation. We restrict $P = P_1 \oplus P_2$ to a slice transverse to the \mathcal{G} -action $A \mapsto A - 2df \cdot f^{-1}, \psi \mapsto f\psi$, i.e. to $\mathcal{S} = \{(a,\phi)|d^*a = 0 \text{ and } \operatorname{Im}(\langle \phi, \psi_0 \rangle_{L^2}) = 0\}$ (which is transverse to the \mathcal{G} -orbit at (A_0, ψ_0)). Then $P|_{\operatorname{Ker}\ d^* \times L^2_1(S^+)}$ is a differential operator of order 1, and is Fredholm (f.d. kernel and cokernel) since

(7)
$$(P \oplus d^*): L_2^2(X, i \wedge^1) \times L_1^2(S^+) \to L^2(S^-) \times L_1^2(X, i \wedge^2) \times L_1^2(X, i \mathbb{R})$$

 $(=D_{A_0} \oplus (d^+ \oplus d^*) + \text{order } 0)$ is elliptic. Elliptic regularity implies that both Ker, Coker lie in C^{∞} . For generic (g,μ) , P is surjective (specifically, consider $\{(A,\psi,\mu)|\cdots\}/\mathcal{G}$ and apply Sard's theorem to project to μ and find a good choice). We expect that Ker P is the tangent space to \mathcal{M} : this is only ok if Coker P=0, so we can use the implicit function theorem to show that \mathcal{M} is smooth with $T\mathcal{M}=\text{Ker }P|_{\mathcal{S}}$. The statement about the dimension follows from the Atiyah-Singer index theorem, which gives a formula for $d(S)=\text{ind}(P|_{\mathcal{S}})=\text{dim Ker }-\text{dim Coker}$. Compactness of \mathcal{M} follows from the a priori bounds on the solutions: the key point is that we get a bound on $\sup |\psi|$, so elliptic regularity and "bootstrapping" give us bounds in all norms.

Consider a solution (A, ψ) of the SW equations (for simplicity assume $\mu = 0$). We have the following Weitzenbock formula for the Dirac operator:

(8)
$$D_A^2 \psi = \nabla_A^* \nabla_A \psi + \frac{s}{4} \psi + \frac{1}{2} \gamma(F_A^+) \psi$$

where ∇_A^* is the L^2 -adjoint of ∇_A , s is the scalar curvature of the metric g (this can be shown by calculation in a local frame). Now,

(9)
$$D_A \psi = 0 \implies 0 = \langle D_A^2 \psi, \psi \rangle = \langle \nabla_A^* \nabla_A \psi, \psi \rangle + \frac{s}{4} |\psi|^2 + \frac{1}{2} \langle \gamma(F_A^+) \psi, \psi \rangle$$

where $\gamma(F_A^+) = (\psi^* \otimes \psi)_0 = \psi^* \otimes \psi - \frac{1}{2} |\psi|^2$. Then

(10)
$$0 = \frac{1}{2} d^* d |\psi|^2 + |\nabla_A \psi|^2 + \frac{s}{4} |\psi|^2 + \frac{1}{4} |\psi|^4$$

Take a point where $|\psi|$ is maximal. Then

(11)
$$\frac{1}{2}d^*d|\psi|^2 \ge 0 \implies \frac{s}{4}|\psi|^2 + \frac{1}{4}|\psi|^4 \le 0 \implies |\psi|^2 \le \max(-s,0)$$

Theorem 2. If q has scalar curvature > 0, then the SW-invariants $\equiv 0$.

Proof. A small generic perturbation ensures that there are no reducible solutions. The above estimate on $\sup |\psi|$ ensures that there are no irreducible solutions either.