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SYMPLECTIC GEOMETRY, LECTURE 23 

Prof. Denis Auroux 

1. Branched Covers 

Definition 1. For (M, ω) a symplectic manifold, p ∈ M , a local diffeomorphism φ : U → Cn for U � p is 
ω-tame if (φ∗ω)(v, iv) > 0 ∀v =� 0 ∈ Cn . This is, φ∗J0 is ω-tame, i.e. complex lines in Cn give symplectic 
submanifolds in M . 

Definition 2. A map f : X4 (Y 4, ωY ) from a compact, oriented manifold to a compact, symplectic manifold→
is a symplectic branched covering if ∀p ∈ X, ∃U � p, V � f(p) coordinate neighborhoods (with φ : U → C2 an 
oriented diffeomorphism, ψ : V C2 an ωY -tame diffeomorphism) s.t. the right vertical map of the commutative 
diagram 

→ 

φ 
X ⊃ U �� C2 

(1) f ψfφ−1 

Y ⊃ V �� C2 
ψ 

is one of 
(1) (u, v) �→ (z1, z2) = (u, v) (local diffeomorphism), 
(2) (u, v) �→ (z1, z2) = (u2, v) (simple branching), 
(3) (u, v) �→ (z1, z2) = (u3 − uv, v) (cusp) 

Remark. Simple branching also makes sense in higher dimensions as (x1, . . . , xn 1
2 , x2, . . . , xn). Moreover, 

p
) �→ (x

we could allow higher order branching, i.e. (u, v) �→ (u , v) for p > 2, but this isn’t generic. 

Remark. The three models given above correspond to the 3 generic local models for holomorphic maps C2 C2 .→ 

Definition 3. The ramification curve is the set R ⊂ X s.t. R = df(p) not onto}. The branch 
(discriminant) curve is D = f(R) ⊂ Y , i.e. D = {q ∈ Y |#f−1(q) < deg

{
f
p 
}. 
∈ X|

We can calculate these curves explicitly in local coordinates. For instance, in the case of simple branching, 
2u 0 

we have that Jac(f) = det (df) = = 2u, so R = {u = 0}, D = {z1 = 0}. In the case of a cusp, we0 1 
have 

3u2 − v −u 
0 1 

= 3u 2 − v(2) Jac(f) = det (df) = 

so R = {v = 3u2} and D = {27z1
2 = 4z2

3}. What happens at the cusp: ∀p ∈ R, Ker df = C × {0} ⊂ TpC2, so 
Ker df is transverse to TR at most points, but not at the cusp. 

Lemma 1. R ⊂ X is a smooth, 2-dimensional submanifold, and D ⊂ Y is a symplectic submanifold of Y 
immersed except at isolated points (corresponding to cusps). In local coordinates, D is a complex curve, so TD 
consists of complex lines and ωY |TD > 0. 

Note that the generic singularities of D consist of two types: complex cusps and transverse double points 
(with either orientation, i.e. TqY = T1 ⊕ T2 with agreeing or disagreeing orientations). 

Proposition 1. If f : X4 (Y 4, ωY ) is a symplectic branched covering, then X carries a symplectic form ωX→
(canonical up to isotopy) s.t. [ωX ] = f∗[ωY ]. 
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Proof. Note that f∗ωY is a closed 2-form which is nondegenerate outside of R. ∀p ∈ R, Kp = Ker dfp ⊂ TpX 
is the kernel of f∗ωY , and is a complex line in local coordinates (so it carries a natural orientation). We claim 
that ∃α an exact 2-form on X s.t. ∀p ∈ R, α| > 0 is positive nondegenerate. Assuming this, we have that Kp 

ωX = f∗ωY + �α for � > 0 sufficient small is closed and nondegenerate, since 

(3) ωX ∧ ωX = f∗ωY ∧ f∗ωY + 2�f∗ω ∧ α + �2α ∧ α 

with the first term ≥ 0 everywhere and nondegenerate outside R, the second term positive on R (in local 
coordinates, f∗ωY = iλ (dv ∧ dv) for some λ > 0, and α C×{0} > 0), and the third term negligible for small �.2 |

We are left to prove our claim. Fix p ∈ R, and choose local coordinates (u, v) on X of our model. Set 
x = Re(u), y = Im(u), and αp = d(χ1(|u|)χ2(|v|)xdy), where χ1, χ2 are cutoff functions chosen s.t. ∀q ∈
R ∩ Supp(χ2), χ1 ≡ 1. In local coordinates, we have that 

(4) ∀(u, v) ∈ R ∩ Supp(χ2), αp|K=C×{0} = χ2(|v|)dx ∧ dy > 0 

and 0 outside Supp(χ2). Covering R by small neighborhoods, and taking α to be the sum of these αp gives the 
desired exact form. 

Finally, to see that the choice of ωX is canonical up to isotopy, note that the set of α’s satisfying our claim 
(i.e. exact 2-forms s.t. α|K > 0 along R) is convex. That is, we can find an � sufficiently small s.t., for two such 
forms α1, α2, 

(5) f∗ωY + �α1, f
∗ωY + �α2, f

∗ωY + �(tα1 + (1 − t)α2) 

are all symplectic. � 

There is a converse to this result. Let (X4, ω) be a complex symplectic, 2
1 
π [ω] ∈ H2(X, Z), L → X a 

line bundle s.t. c1(L) = 2
1 
π [ω], J a compatible almost-complex structure, etc. Recall that L⊗k has many 

approximately-holomorphic sections: choosing three ”good” sections, we obtain a map f : X CP2 which 
locally looks like one of our models. That is, 

→ 

Theorem 1. Every compact symplectic 4-manifold with integral 2
1 
π [ω] can be realized as a symplectic branched 

cover of CP 2 . 

This fk will look like the local models in coordinates which are ω-tame on X and ω0-tame on CP 2, and 
applying the proposition to fk gives [fk 

∗ω0] = k[ω] with ωX isotopic to kω. Moreover, if k is large enough, then 
∃ a preferred choice of fk : X → CP 2 up to homotopy among symplectic branched covers. 

Remark. If D is holomorphic, then we can lift J0 to X, i.e. X is a Kähler manifold and f is holomorphic. 
Conversely, if X is not Kähler, then the singular symplectic curve D ⊂ CP2 is not isotopic to any holomorphic 
curve. 


