SYMPLECTIC GEOMETRY, LECTURE 17

Prof. Denis Auroux

The Hodge decomposition stated last time places strong constraints on H^* of Kähler manifolds, e.g. dim H^k is even for k odd because \mathbb{C} conjugation gives isomorphisms $\overline{\mathcal{H}^{p,q}} \cong \mathcal{H}^{q,p}$ (note that this is false for symplectic manifolds in general). The Hodge star * gives isomorphisms $\mathcal{H}^{p,q} \xrightarrow{\sim} \mathcal{H}^{n-q,n-p}$ and the Hodge diamond structure on the the ranks of the Dolbeault cohomology groups, i.e.

is symmetric across the two diagonal axes. Moreover, note that $[\omega^{\wedge p}] \in \mathcal{H}^{p,p}$ is nonzero, since $[\omega^{\wedge n}]$ is the volume class.

We have even stronger constraints, namely the "hard Lefschetz theorem".

Theorem 1. $L^{n-k} = (\cdot \wedge \omega^{n-k}) : H^k(X, \mathbb{R}) \to H^{2n-k}(X, \mathbb{R})$ is an isomorphism.

This is false for many symplectic manifolds. Moreover, combining this with Poincaré duality gives that, for $k \leq n, \ H^k \times H^k \to \mathbb{R}, \ \alpha, \beta \mapsto \int \alpha \cup \beta \cup \omega^{n-k}$ is a nondegenerate bilinear pairing (skew-symmetric if k is odd). We also have the *Kodaira embedding theorem*:

Theorem 2. For (X, ω) a compact Kähler manifold, $[\omega] \in H^2(X, \mathbb{Z})$, \exists a projective embedding $X \to \mathbb{CP}^N$ realizing X as a projective algebraic variety.

We will see a symplectic geometry proof due to Donaldson.

1. Holomorphic vector bundles

Let (M, J) be a complex manifold, $E \to M$ a complex vector bundle. Then we can cover M by U_{α} s.t. the restrictions $U_{\alpha} \times \mathbb{C}^n \cong E|_{U_{\alpha}} \to U_{\alpha}$ are trivial.

Definition 1. E is a holomorphic vector bundle if the transition functions $\phi_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(r,\mathbb{C})$ are holomorphic.

Note that this only makes sense on a complex manifold. Now, \exists a natural $\overline{\partial}$ operator on sections given in a local trivialization by $\overline{\partial}$ (given a section s which looks like ξ_{α} in the local trivialization α , on an intersection we have that $\overline{\partial}\xi_{\alpha} = \phi_{\alpha,\beta}\overline{\partial}\xi_{\beta}$ since $\overline{\partial}\phi_{\alpha,\beta} = 0$). This extends to $\overline{\partial}: \Omega^{p,q}(E) \to \Omega^{p,q+1}(E)$ similarly.

Definition 2. $H^q_{\overline{\partial}}(E) = \frac{\operatorname{Ker} (\overline{\partial}: \Omega^{0,q}(E) \to \Omega^{0,q+1}(E))}{\operatorname{Im}(\overline{\partial}: \Omega^{0,q-1}(E) \to \Omega^{0,q}(E))}$. In particular, $H^0(E)$ is the space of holomorphic sections.

Specifying the holomorphic structure on a complex vector bundle E is equivalent to specifying a $\overline{\partial}$ operator with $\overline{\partial}^2 = 0$. The $\overline{\partial}$ operator is half of a connection: in fact, ∇ a connection on E decomposes into $\nabla = \nabla^{1,0} + \nabla^{0,1}$

Proposition 1. For $(E, \overline{\partial}, |\cdot|)$ a holomorphic bundle with a Hermitian metric, $\exists !$ Hermitian connection s.t. $\nabla^{0,1} = \overline{\partial}$.

Proof. We work in local coordinates on M, and local trivializations of E by orthonormal sections σ_j (but not necessarily holomorphic trivializations; $\overline{\partial}\sigma_j$ may be nonzero). $\nabla=d+A$ for $A=(a_{ij})$ a matrix-valued 1-form $(a_{ij}=\langle\nabla\sigma_j,\sigma_i\rangle)$. ∇ is Hermitian iff $a_{ij}=-\overline{a_{ij}}$, i.e. A is antihermitian, and ∇ is holomorphic, i.e. $\nabla^{0,1}s=\overline{\partial}s$ iff $A^{0,1}$ is given by $a_{ij}^{0,1}=\langle\overline{\partial}\sigma_j,\sigma_i\rangle$. Then $A^*=-A\Leftrightarrow A^{1,0}=-(A^{0,1})^*$, i.e. $a_{ij}^{1,0}=-\overline{a_{ji}^{0,1}}$.

Equivalently, in a holomorphic trivialization, when $\overline{\partial}$ is the usual $\overline{\partial}$ operator, $\langle \cdot, \cdot \rangle$ given by $h = C^{\infty}$ function with values in positive definite Hermitian matrices, $\nabla = d + A$ again and ∇ is Hermitian $\Leftrightarrow d\langle s, s' \rangle = \langle \nabla s, s' \rangle + \langle s, \nabla s' \rangle \Leftrightarrow d(s^*hs') = (ds^* + s^*A^*)hs' + s^*h(ds' + As') \Leftrightarrow dh = A^*h + hA$. On the other hand, now $\nabla^{0,1} = \overline{\partial} \Leftrightarrow A^{0,1} = 0$. Hence $dh = A^*h + hA \Leftrightarrow A = h^{-1}\partial h$ (and $A^* = \overline{\partial} h \cdot h^{-1}$).

Proposition 2. In a holomorphic frame, the connection 1-form A is of type (1,0), and $\partial A = -A \wedge A$, $R^{\nabla} = \overline{\partial} A$ is of type (1,1), and $\overline{\partial} R = 0$ and $\partial R = [R,A]$.

In fact, we have

Theorem 3. $(E, \nabla^{0,1} = \overline{\partial}^{\nabla})$ is holomorphic $\Leftrightarrow (\overline{\partial}^{\nabla})^2 = 0 \Leftrightarrow R^{0,2} = 0$.

Proof. First, $A = h^{-1}\partial h$ has type (1,0) by the above, and

(2)
$$\partial A = \partial (h^{-1}) \wedge \partial h = (-h^{-1}(\partial h)h^{-1}) \wedge \partial h = -(h^{-1}\partial h) \wedge (h^{-1}\partial h) = -A \wedge A$$

by the formula for derivatives of inverses in a noncommutative setting. Second, $R^{\nabla} = dA + A \wedge A = dA - \partial A = \overline{\partial} A$, hence it has type (1, 1). Finally, $\overline{\partial} R = \overline{\partial} \overline{\partial} A = 0$, $\partial R = \partial \overline{\partial} A = -\overline{\partial} \partial A = \overline{\partial} A \wedge A - A \wedge \overline{\partial} A = [R, A]$.