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SYMPLECTIC GEOMETRY, LECTURE 15 

Prof. Denis Auroux 

1. Hodge Theory 

Theorem 1 (Hodge). For M a compact Kähler manifold, the deRham and Dolbeault cohomologies are related 
= Hq,pby Hk (M, C) = Hp,q (M), with Hp,q ∼ .dR p,q ∂ 

Before we discuss this theorem, we need to go over Hodge theory for a compact, oriented Riemannian manifold 
(M, g). �kDefinition 1. For V an oriented Euclidean vector space, the Hodge ∗ operator is the linear map V� →

n−k 
V which, for any oriented orthonormal basis e1, . . . , en, maps e1 ∧ · · · ∧ ek �→ ek+1 ∧ · · · ∧ en. 

Example. For any V , ∗(1) = e1 ∧ · · · ∧ en, and ∗∗ = (−1)k(n−k). 

Applying this to Tx 
∗M , we obtain a map on forms. 

Remark. Note that, 

(1) ∀α, β ∈ Ωk, α ∧ ∗β = �α, β�.vol 

Definition 2. The codifferential is the map 

(2) d∗ = (−1)n(k−1)+1 ∗ d∗ : Ωk(M) Ωk−1(M)→ 

Proposition 1. d∗ is the L2 formal adjoint to the deRham operator d, i.e. on a compact closed Riemannian 
manifold, ∀α ∈ Ωk, β ∈ Ωk+1, we have 

(3) �dα, β�L2 = �dα, β�dvol = �α, d∗β�L2 

M 

Proof. This follows from 

�dα, β�dvol = dα ∧ ∗β = d(α ∧ ∗β) − (−1)k α ∧ d ∗ β 
M M M M 

(4) = (−1)k+1 α ∧ d ∗ β = (−1)k+1 α ∧ ∗(∗d ∗ β)(−1)k(n−k) �M M 

= (−1)kn+1 �α, ∗d ∗ β�dvol 
M 

Example. For Rn with the standard metric, � � ∂α � ∂α 
(5) α = αI dxI = dα = dxj ∧ and d∗α = − i ∂⇒ 

∂xj ∂xj ∂xj
I⊂{1,...,n} j j 

Definition 3. The Laplacian is Δ = dd∗ + d∗d : Ωk Ωk .→ 

Note that, on Ω∗(M) = n
k=0 Ω

k(M), Δ = (d + d∗)2 . By the adjointness of d and d∗, we see that Δ is a 
self-adjoint, second order differential operator, i.e. �Δα, β�L2 = �α, Δβ�L2 . Moreover, 

(6) �Δα, α�L2 = �dd∗α, α�L2 + �d∗dα, α�L2 = ||d∗α|| 2 + ||dα|| 2 ≥ 0 

so Δα = 0 α is closed and co-closed. ⇔ 
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Definition 4. The space of harmonic forms is the set Hk = {α ∈ Ωk|Δα = 0}. 

We have a natural map Hk → Hk, α �→ [α]. 

Theorem 2 (Hodge). For M a compact, oriented Riemannian manifold, every cohomology class has a unique 
harmonic representative, i.e. Hk ∼ k ⊕L2 d(Ωk−1) ⊕L2 d∗(Ωk+1).= Hk, and Ωk(M ) = H

Remark. Clearly Hk + d(Ωk−1) ⊂ Ker d = (Im d∗)⊥ and Hk + d∗(Ωk+1) ⊂ Ker d∗ = (Im d)⊥, implying that 
the map Hk → Hk is injective. Surjectivity (i.e. existence of harmonic representatives) is more difficult and 
requires elliptic theory. 

Definition 5. A differential operator of order k is a linear map L : Γ(E) Γ(F ) s.t., locally in coordinates, → � ∂|α|s 
(7) L(s) = Aα 

∂xα 
|α|≤k 

where each Aα is a C∞ function with values in matrices, i.e. a local section of Hom(E, F ). The symbol of L 
is the map 

(8) σk : T ∗M � ξ �→ Aα(x)ξα1 · · · ξαn ∈ Hom(Ex, Fx)x 1 n 

|α|=k 

L is elliptic if for every nonzero ξ, σ(ξ) is an isomorphism. 

Example. For instance, in local coordinates, the symbol of the Laplacian is given by σ(ξ) = − |σ| 2 · id. 

Now, let L be a differential operator of order k: it extends from L : C∞(E) C∞(F ) to Ls : W s(E) 
W s−k(F ). 

→ → 

Definition 6. For L : Γ(E) Γ(F ) a differential operator, P : Γ(F ) Γ(E) is called a parametrix (or→ →
pseudoinverse) if L P − idE and P L − idF are smoothing operators, i.e. they extend continuously to 
W s(E) W s+1(E). 

◦ ◦ 
→ 

Using Rellich’s lemma on embedding of Sobolev spaces, we find that 

Theorem 3. Every elliptic operator has a pseudoinverse.


Corollary 1. ξ ∈ W s(E), L is elliplic, and Lξ ∈ C∞(F ) = ⇒ ξ ∈ C∞(E).


Proof. Let P be a parametrix. Let S = P ◦ L − I, so


(9) ξ = P ◦ Lξ − Sξ 

Since the former part lies in C∞(E) and the latter in W s+1(E), we have that ξ W s+1(E). Iterating, 
ξ ∈ C∞(E). 
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