SYMPLECTIC GEOMETRY, LECTURE 14

Prof. Denis Auroux

1. Kähler Geometry

Let (M, ω, J) be a Kähler manifold, with ω a symplectic form and J an integrable complex structure compatible with ω .

- Compatibility $\omega(Ju, Jv) = \omega(u, v)$: note that, for a (2,0)-form $\gamma = \sum a_{i,j} dz_i \wedge dz_j$, we have $\gamma(Ju, Jv) = -\gamma(u, v)$, and similarly for a (0,2)-form. For a (1,1)-form $\gamma = \sum a_{i,j} dz_i \wedge d\overline{z}_j$, we have $\gamma(Ju, Jv) = \gamma(u, v)$, implying that $\omega \in \Omega^{1,1}$.
- Closedness $d\omega = 0 \Leftrightarrow \partial \omega = 0, \overline{\partial} \omega = 0$: in particular, $[\omega] \in H^{1,1}_{\overline{\partial}}(M)$ lives in the Dolbeault cohomology of M. Moreover ω is real (i.e. $\overline{\omega} = \omega$). Writing ω locally as $\frac{i}{2} \sum_{j,k=1}^{n} h_{jk} dz_j \wedge d\overline{z}_k$, so

(1)
$$\overline{\omega} = \frac{i}{2} \sum_{j,k=1}^{n} \overline{h_{jk}} dz_k \wedge d\overline{z}_j$$

we have that $h_{jk} = \overline{h_{kj}}$, and (h_{jk}) must be a Hermitian matrix.

• Nondegeneracy $\omega^n \neq 0 \Leftrightarrow (h_{jk})$ is invertible, since

(2)
$$\omega^n = \pm (\frac{i}{2})^n n! (\det(h_{jk})) dz_1 \wedge \dots \wedge dz_n \wedge d\overline{z}_1 \wedge \dots \wedge d\overline{z}_n$$

• Positivity $\omega(v,Jv) > 0 \Leftrightarrow \text{positivity of } g(\cdot,\cdot) = \omega(\cdot,J\cdot) = \sum h_{jk} dz_j d\overline{z}_k \Leftrightarrow (h_{jk}) \text{ is a positive definite Hermitian matrix}$

Thus, we find that, given a complex manifold (M,J), ω is a Kähler form $\Leftrightarrow \omega \in \Omega_{\mathbb{R}}^{1,1}, \overline{\partial}\omega = 0$, and locally $\omega = \frac{1}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$ for (h_{jk}) a positive definite Hermitian matrix. Moreover, since these properties are preserved by convex linear combinations, any two Kähler forms for the same complex structure J are deformation equivalent and isotopic if $[\omega]$ is fixed.

1.1. Kähler potential.

Definition 1. For M a complex manifold, $\phi \in C^{\infty}(M,\mathbb{R})$ is strictly plurisubharmonic (spsh) if on each complex chart (U, z_j) , the matrix $(\frac{\partial \phi}{\partial z_j \partial \overline{z}_k})$ is positive definite at every point.

Recall that J integrable, $d^2=0 \implies \partial^2=0, \partial\overline{\partial}+\overline{\partial}\partial=0, \overline{\partial}^2=0.$

Proposition 1. ϕ spsh $\Leftrightarrow \frac{i}{2}\partial \overline{\partial} \phi$ is Kähler.

Example. On \mathbb{C}^n , $\phi = \sum |z_j|^2 = \sum z_j \overline{z_j}$ is strictly plurisubharmonic since $(\frac{\partial \phi}{\partial z_j \partial \overline{z_k}})$ is the identity matrix, and the corresponding symplectic form $\omega = \frac{i}{2} \sum dz_j \wedge d\overline{z_j}$ is the standard one.

We have the following converse.

Theorem 1. For ω a closed, real-valued (1,1)-form on $p \in M$, \exists a neighborhood $U \ni p$, $\phi \in C^{\infty}(U,\mathbb{R})$ s.t. $\omega = \frac{i}{2} \partial \overline{\partial} \phi$. This ϕ is called a local Kähler potential for ω .

1.2. Examples of Kähler Manifolds.

Example. Any complex submanifold of (\mathbb{C}^n, ω) is Kähler, with the inherited complex and symplectic structures.

Example. Complex projective space $\mathbb{CP}^n = \mathbb{C}^{n+1} \setminus \{0\}/\mathbb{C}^*$ is Kähler: letting

(3)
$$U_i = \{(z_0 : \cdots : z_{i-1} : 1 : z_{i+1} : \cdots : z_n)\}$$

be the standard charts $\cong \mathbb{C}^n$, we have the Fubini-Study Kähler form

(4)
$$\omega_{FS} = \frac{i}{2} \partial \overline{\partial} \log(1 + |z|^2)$$

(since $f(z) = \log(1 + |z|)^2$ is spsh). Explicitly,

(5)
$$\partial \overline{\partial} f = \partial \frac{\sum z_j d\overline{z}_j}{1 + |z|^2} = \frac{(1 + |z|^2) \sum dz_j \wedge d\overline{z}_j - (\sum \overline{z}_j dz_j) \wedge (\sum z_j d\overline{z}_j)}{(1 + |z|^2)^2}$$

Applying this to $v \in T^{1,0}, \overline{v} \in T^{0,1}$, we obtain

(6)
$$\frac{(1+|z|^2)|v|^2-|\langle z,v\rangle|^2}{(1+|z|^2)^2} \ge \frac{|v|^2}{(1+|z|^2)^2}$$

Since $\frac{i}{2}\partial \overline{\partial} f(u, iu) = \partial \overline{\partial} f(u^{1,0}, \overline{u^{1,0}})$, we have the desired positivity. Moreover, for ϕ a transition map (WLOG between U_0 and U_1), we have that $\phi^* f = \log(1 + |z|^2) - \log|z_1|^2 \implies \partial \overline{\partial} (\phi^* f) = \partial \overline{\partial} f$ since

(7)
$$\partial \overline{\partial} \log |z_1|^2 = \partial \frac{z_1 d\overline{z}_1}{|z_1|^2} = \partial \frac{d\overline{z}_1}{\overline{z}_1} = 0$$

Finally, recall that $H^2(\mathbb{CP}^n, \mathbb{R}) = \mathbb{R}$, and $H_2(\mathbb{CP}^n)$ is generated by $[\mathbb{CP}^1]$. The class of $[\omega]$ is thus defined by the value of

(8)
$$[\omega] \cdot [\mathbb{CP}^1] = \int_{\mathbb{CP}^1} \omega_{FS} = \text{Area}(\mathbb{CP}^1, \omega_{FS})$$

Example. Any complex submanifold of \mathbb{CP}^n (i.e. complex projective variety) is Kähler.

Theorem 2 (Kodaira Embedding). Let (X, ω, J) be a compact Kähler manifold, with $[\omega] \in H^2(X, \mathbb{R})$ an integral class. Then \exists a holomorphic embedding $X \hookrightarrow \mathbb{CP}^n$ making it a complex projective variety, with ω differing from ω_{FS} by a scaling factor.

Theorem 3 (Hodge). For (M, ω) a compact Kähler manifold, the Dolbeault cohomology groups $H^{p,q}_{\overline{\partial}}(M)$ satisfy $H^k(M, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}_{\overline{\partial}}(M)$ and $H^{p,q} \cong \overline{H^{q,p}}$.

Corollary 1. dim $H^k(M)$ is even for odd k.

Example. In the 70's, Kodaira and Thurston independently studied a closed 4-manifold which carries both a complex structure and a symplectic structure but which is not Kähler.