SYMPLECTIC GEOMETRY, LECTURE 13

Prof. Denis Auroux

1. INTEGRABILITY OF ALMOST-COMPLEX STRUCTURES
Recall the following:

Definition 1. The Nijenhuis tensor is the form

(1) Nj(u,v) = [Ju, Jv] — Ju, Jv] — J[Ju,v] — [u,v]

Proposition 1. N(u,v) = —8Re([u!?,v19]%1).

Proof. [u%, 010 = Yu — iJu,v — iJv] = L([u,v] — i[Ju,v] — i[u, Jv] — [Ju, Jv]). Taking the real part of the
(0,1) component gives the desired expression. |

Corollary 1. N = 0 globally < [T+°,T10) ¢ T1O, i.e. the Lie bracket preserves the splitting T @ T
Proposition 2. N is a tensor, i.e. in depends only on the values of u,v.

Note also that N is by definition skew-symmetric an J-antilinear. In fact, /N can be taken as a complex map
N (TM,J) — (TM,—J). Thus, if dim gM = 2, N = 0, since N (u, Ju) = —J N (u,u) = 0.

Definition 2. An almost-complex structure J is a complex structure if it is integrable, i.e. if 3 local holomorphic
coordinates s.t. (M, J) = (C™, 1) locally.

Proposition 3. If J is a complex structure, N = 0.

Proof. This follows from the fact that, on T7H°C", [22, 2] = 0. 0

Theorem 1 (Newlander-Nirenberg). N =0 < J is integrable.

Proof. Sketch: producing holomorphic coordinates is equivalent to giving a frame on the tangent bundle of the
form {%}, which is the same as finding a basis {e;} of T10 s.t. [e;, e;] = 0. O

This does not make the problem of determining whether a manifold has some complex structure trivial: for
instance, it is currently unknown whether S% has an integrable complex structure.
We can extend our tensor to differential forms to obtain alternate ways to determine integrability.

Proposition 4. The dual map N* : /\0’1 "M — /\2’0 T*M is precisely the map N*a = (do)®0),
Proof. For a € Q%! we have a decomposition da = da + da + (da)?0) € QM @ Q02 @ 0>, Moreover,
A9 (u, v) = da®0 (110, v10) = da(u0, v10)
= w0 a(ul0) — 10 a(ul) — a([ul?, v10))
The first two terms of the latter expression vanish, implying that da(u'?, v1?) = 8a(N (u,v)). O
Similarly, for 8 € Q% we have N3 = (d3)(®-2). Note that, for f a function, df = 8f + 0f, so
(3) ddf = d(8f) + d(8f) = (90f + BOf + N Of) + (N*Of + df + dof)

SO 52]” = —N*Bf. If f is holomorphic, f = 0 = 90f = 0 — N*af = 0. Therefore, if there exist
zi : M — C holomorphic functions s.t. 0z; generate T*M"°, then N =0 and 3 =o.

(2)

Theorem 2 (Newlander-Nirenberg). J is integrable & N =0 < [T, T c T & d=0+0 & 7 =0 on
forms.
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Finally, we return to the case of M a symplectic manifold with compatible a.c.s. J and induced metric g.
Denote by V the Levi-Civita connection given by g. In this case, J is integrable < V(Jv) = JV(v) & VJ =
0« V(Th0) c 0.

Definition 3. A symplectic manifold (M,w,J) is Kéhler if J is integrable and compatible with w. That is,
(M, J) is a complex manifold, w is a closed, positive, real, nondegenerate (1,1)-form (i.e. w(Ju, Ju) = w(u,v)).

Ezample. (C™,wy,1) is Kéhler.
FEzample. Any Riemann surface (oriented with area form) is Kéhler.

Example. The complex projective space CP™ = C"*1 < {0}/(z0,.-.,2n) ~ (A20, .., Az,) is Kihler. The points

are given as homogeneous coordinates [zg : - - : 2], with coordinate charts

(1) C 2 Ui ={m A0} ={[ i1 )

and coordinate changes (WLOG on Uy NUy) given by [1: 21 ¢ -+- : 2] — [Z—l1 :1:2 ... 22] Note that
CP! = CU {o0} = 5% more generally,

(5) CP™={[l:zy: 2]} U{[0: 21 - 2,]|2 # 0 for some i} = C*UCP"*

so we can construct the spaces inductively from cells in dimension 2i,4 € {0,...,n}.

We claim that CP™ has a symplectic structure compatible with the complex structure given above.



