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1. Integrability of Almost-Complex Structures 

Recall the following: 

Definition 1. The Nijenhuis tensor is the form 

(1) NJ (u, v) = [Ju, Jv] − J [u, Jv] − J [Ju, v] − [u, v] 

Proposition 1. N(u, v) = −8Re([u1,0, v1,0]0,1).


Proof. [u1,0, v1,0] = 1 [u − iJu, v − iJv] = 1 ([u, v] − i[Ju, v] − i[u, Jv] − [Ju, Jv]). Taking the real part of the
4 4 
(0, 1) component gives the desired expression. � 

Corollary 1. N = 0 globally ⇔ [T 1,0, T 1,0] ⊂ T 1,0, i.e. the Lie bracket preserves the splitting T 1,0 ⊕ T 0,1 . 

Proposition 2. N is a tensor, i.e. in depends only on the values of u, v. 

Note also that N is by definition skew-symmetric an J-antilinear. In fact, N can be taken as a complex map �2(T M, J) → (T M, −J). Thus, if dim RM = 2, N = 0, since N(u, Ju) = −JN (u, u) = 0. 

Definition 2. An almost-complex structure J is a complex structure if it is integrable, i.e. if ∃ local holomorphic 
coordinates s.t. (M, J) ∼= (Cn, i) locally. 

Proposition 3. If J is a complex structure, N = 0. 

Proof. This follows from the fact that, on T 1,0Cn , [ ∂ , ∂ ] = 0. �∂zi ∂zj 

Theorem 1 (Newlander-Nirenberg). N ≡ 0 ⇔ J is integrable.


Proof. Sketch: producing holomorphic coordinates is equivalent to giving a frame on the tangent bundle of the

∂form { ∂zi 
}, which is the same as finding a basis {ei} of T 1,0 s.t. [ei, ej ] = 0. � 

This does not make the problem of determining whether a manifold has some complex structure trivial: for 
instance, it is currently unknown whether S6 has an integrable complex structure. 

We can extend our tensor to differential forms to obtain alternate ways to determine integrability. 

Proposition 4. The dual map N∗ : 
�0,1 

T ∗M → 
�2,0 

T ∗M is precisely the map N∗α = (dα)(2,0). 

Proof. For α ∈ Ω0,1, we have a decomposition dα = ∂α + ∂α + (dα)(2,0) ∈ Ω1,1 ⊕ Ω0,2 ⊕ Ω2,0 . Moreover, 

dα(2,0)(u, v) = dα(2,0)(u 1,0 , v 1,0) = dα(u 1,0 , v 1,0)
(2) 

= u 1,0 α(v 1,0) − v 1,0 α(u 1,0) − α([u 1,0 , v 1,0])· · 

The first two terms of the latter expression vanish, implying that dα(u1,0, v1,0) = 8α(N(u, v)). � 

Similarly, for β ∈ Ω1,0, we have N
∗
β = (dβ)(0,2). Note that, for f a function, df = ∂f + ∂f , so 

(3) ddf = d(∂f) + d(∂f) = (∂∂f + ∂∂f + N
∗
∂f) + (N∗∂f + ∂∂f + ∂∂f) 

so ∂ 
2 
f = −N

∗
∂f . If f is holomorphic, ∂f = 0 = ⇒ ∂∂f = 0 = ⇒ N

∗
∂f 

2 
= 0. Therefore, if there exist 

zi : M C holomorphic functions s.t. ∂zi generate T ∗M1,0, then N = 0 and ∂ = 0. → 

Theorem 2 (Newlander-Nirenberg). J is integrable ⇔ N ≡ 0 ⇔ [T 1,0, T 1,0] ⊂ T 1,0 ⇔ d = ∂ + ∂ ⇔ ∂ 
2 

= 0 on 
forms. 
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Finally, we return to the case of M a symplectic manifold with compatible a.c.s. J and induced metric g. 
Denote by � the Levi-Civita connection given by g. In this case, J is integrable ⇔ �(Jv) = J�(v) ⇔ �J = 

.0 ⇔ �(T 1,0) ⊂ T 1,0


Definition 3. A symplectic manifold (M, ω, J) is Kähler if J is integrable and compatible with ω. That is,

(M, J) is a complex manifold, ω is a closed, positive, real, nondegenerate (1, 1)-form (i.e. ω(Ju, Ju) = ω(u, v)).


Example. (Cn, ω0, i) is Kähler. 

Example. Any Riemann surface (oriented with area form) is Kähler. 

Example. The complex projective space CP n = Cn+1 � {0}/(z0, . . . , zn) ∼ (λz0, . . . , λzn) is Kähler. The points 
are given as homogeneous coordinates [z0 : : zn], with coordinate charts · · · 

Cn = Ui = 0} = {[ z0 : : 1 : 
zn

(4) ∼ = {zi �
zi 

· · · · · · 
zi 

]}


and coordinate changes (WLOG on U0 ∩ U1) given by [1 : z1 : · · · : zn] �→ [ 1 : 1 : z2 : · · · : zn ]. Note that
z1 z1 z1 

CP 1 = S2: more generally, = C ∪ {∞} ∼

(5) CP n = {[1 : z1 : · · · zn]} � {[0 : z1 : · · · zn]|zi = 0 for some � i} = Cn ∪ CP n−1 

so we can construct the spaces inductively from cells in dimension 2i, i ∈ {0, . . . , n}. 

We claim that CP n has a symplectic structure compatible with the complex structure given above. 


