SYMPLECTIC GEOMETRY, LECTURE 10

Prof. Denis Auroux

1. Curvature and the Covariant Derivative

Let ∇ be a connection, $R^{\nabla} \in \Omega^2(M, \text{End } E)$ its curvature, where

(1)
$$R^{\nabla}(u,v)s = \nabla_u \nabla_v s - \nabla_v \nabla_u s - \nabla_{[u,v]} s$$

Last time, we saw that in a local trivialization, $\nabla = d + A$, where A is a 1-form with values in $\operatorname{End}(E)$, and $R^{\nabla} = dA + A \wedge A$. Moreover, a change of basis given by $g \in C^{\infty}(U, \operatorname{End}(E))$ acts by

(2)
$$A \mapsto g^{-1}Ag + g^{-1}dg, R^{\nabla} \mapsto g^{-1}R^{\nabla}g$$

We can extend the covariant derivative $\nabla: C^{\infty}(M, E) \to \Omega^{1}(M, E)$ to an operator $d^{\nabla}: \Omega^{p}(M, E) \to \Omega^{p+1}(M, E)$. Locally, $\Omega^{p}(M, E)$ is given by sums $\sum \alpha_{i} s_{i}$, where $\alpha_{i} = dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}$ are p-forms and $e_{i} = s_{i_{1} \cdots i_{p}}$ are sections of E, and d^{∇} maps this to $\sum (\nabla s_{i}) \wedge \alpha_{i} + s_{i} d\alpha_{i}$. In a trivialization $\nabla = d + A$, we have

(3)
$$d^{\nabla} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_r \end{pmatrix} = d \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_r \end{pmatrix} + A \wedge \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_r \end{pmatrix}$$

That is, $d^{\nabla} = d + A \wedge (\cdot)$.

Proposition 1. $R^{\nabla} = (d^{\nabla})^2 : \Omega^0(M, E) \to^{d^{\nabla}} \Omega^1(M, E) \to^{d^{\nabla}} \Omega^2(M, E)$. More generally,

(4)
$$R^{\nabla} \wedge \cdot = (d^{\nabla})^2 : \Omega^p(M, E) \to^{d^{\nabla}} \Omega^{p+1}(M, E) \to^{d^{\nabla}} \Omega^{p+2}(M, E)$$

Proof. In a local trivialization,

(5)
$$d^{\nabla}(d^{\nabla}\alpha) = d^{\nabla}(d\alpha + A \wedge \alpha) = d(d\alpha + A \wedge \alpha) + A \wedge (d\alpha + A \wedge \alpha) = (dA) \wedge \alpha - A \wedge d\alpha + A \wedge d\alpha + A \wedge A \wedge \alpha = (dA + A \wedge A) \wedge \alpha$$

as desired. \Box

Remark. R^{∇} can be thought of as an obstruction for $0 \to C^{\infty}(E) \xrightarrow{d^{\nabla}} \Omega^{1}(E) \xrightarrow{d^{\nabla}} \cdots$ being a complex. If the manifold is flat, i.e. $R^{\nabla} = 0$, then we obtain a twisted de Rham cohomology with coefficients in E. R^{∇} is also an obstruction to the integrability of the horizontal distribution \mathcal{H}^{∇} , i.e. homotopy invariance of parallel transport.

When E = TM for (M,g) a Riemannian manifold, there is a unique metric $(X \cdot g(u,v) = g(\nabla_X u,v) + g(u,\nabla_X v))$ connection on TM s.t. $\nabla_X Y - \nabla_Y X = [X,Y]$, called the *Levi-Cevita* connection. Now, let (M,ω,g,J) be a symplectic manifold with a compatible almost complex structure. Then TM is a complex vector bundle, but ∇^{LC} is not \mathbb{C} -linear in general. Indeed, it is \mathbb{C} -linear $\Leftrightarrow \nabla J = 0$ for the induced connection ∇ on $\mathrm{End}(TM) \Leftrightarrow J$ is integrable (i.e. an actual complex structure).

2. Complex Vector Bundles and Chern Classes

Let $L \to M$ be a complex line bundle, ∇ a connection (possibly Hermitian w.r.t. a Hermitian metric $\langle \cdot, \cdot \rangle$). In a local trivialization, $R^{\nabla} = dA \in \Omega^2(M, \mathbb{C})$ (resp. $\Omega^2(M, i\mathbb{R})$) since $A \in \Omega^1(U, \mathbb{C})$ (resp. $\Omega^1(M, i\mathbb{R})$) has $A \wedge A = 0$. Thus, R^{∇} is a closed 2-form, and has a corresponding class $c = [R^{\nabla}] \in H^2(M, \mathbb{C})$ (resp. $\Omega^2(M, i\mathbb{R})$). For ∇' another connection, we have a global decomposition $\nabla' = \nabla + a$ for $a \in \Omega^1(M, \mathbb{C})$, so $R^{\nabla'} = R^{\nabla} + da$ and $[R^{\nabla}] = [R^{\nabla'}]$. Thus, c is an invariant of L independent of ∇ in $H^2(M, \mathbb{C})$ (resp. $H^2(M, i\mathbb{R})$). Since we can always choose a connection compatible with a given Hermitian form, we have

Definition 1. The first Chern class of L is $c_1(L) = \left[\frac{1}{2\pi}R^{\nabla}\right] \in H^2(M,\mathbb{R})$.

Remark. From algebraic topology, we can obtain an associated integer class $c_1(L) \in H^2(M, \mathbb{Z})$ corresponding to this form.

Now, let $E \to M$ be a complex vector bundle with connection ∇ .

Definition 2. The total Chern form is

(6)
$$c(E, \nabla) = \det \left(I + \frac{i}{2\pi} R^{\nabla} \right) \in \bigoplus_{p \text{ even}} \Omega^{p}(M, \mathbb{C})$$

Decomposing this element, we obtain projections $c_j(E, \nabla) \in \Omega^{2j}(M, \mathbb{C})$. Here $I + \frac{i}{2\pi}R^{\nabla}$ is a matrix with entries (const + 2-forms) in a local trivialization, and det is the usual determinant under the \wedge product. As before, this is independent of change of basis.

Remark. By the formula for det $(I + tM) = 1 + t \cdot \text{Tr}(M) + \cdots$, we find that $c_1(E, \nabla) = \frac{i}{2\pi} \text{Tr}(R^{\nabla})$, and

(7)
$$c_r(E, \nabla) = \left(\frac{i}{2\pi}\right)^r \det R^{\nabla}$$

We can do the same for any ad-invariant polynomial in R^{∇} , giving Chern-Weil theory (for complex vector bundles, simply get functions of c_1, \ldots, c_r).

Theorem 1. $c_j(E,\nabla)$ is closed, and $c_j(E) = [c_j(E,\nabla)] \in H^{2j}(M,\mathbb{R})$ is independent of ∇ .

Proof. Closedness follows from the Bianchi identity for $d^{\nabla}(R^{\nabla})$, and independence follows from showing that $c_j(E, \nabla') - c_j(E, \nabla)$ is a sum of exact terms.

Remark. Another approach involves the Euler class of an oriented rank k real vector bundle $E \to M$ over a compact, oriented manifold M. Let s be a section of E, chosen so s is transverse to the zero section and $Z = s^{-1}(0)$ is a smooth, oriented submanifold of codimension k. Then, at a point of Z, $\nabla s : NZ \to E|_Z$ is an isomorphism. We define $e(E) = [Z] \in H_{n-k}(M,\mathbb{Z}) \cong H^k(M,\mathbb{Z})$ by Poincaré duality. If E was a rank r \mathbb{C} -vector bundle, then $c_r(E) = e(E)$.

Remark. For $TM \to M$, $e(TM) \in H^n(M, \mathbb{Z}) = \mathbb{Z} \Leftrightarrow \chi(M) = e(TM) \cdot [M]$. Moreover, for E, ∇ a flat connection, $c_i(E) = 0 \in H^{2j}(M, \mathbb{R})$.