SYMPLECTIC GEOMETRY, LECTURE 8

Prof. Denis Auroux

1. Almost-complex Structures

Recall compatible triples (ω, g, J) , wherein two of the three determine the third $(g(u, v) = \omega(u, Jv), \omega(u, v) = g(Ju, v), J(u) = \tilde{g}^{-1}(\tilde{\omega}(u))$ where $\tilde{g}, \tilde{\omega}$ are the induced isomorphisms $TM \to T^*M$).

Proposition 1. For (M, ω) a symplectic manifold with Riemannian metric $g, \exists a$ canonical almost complex structure J compatible with ω .

Idea. Do polar decomposition on every tangent space.

Corollary 1. Any symplectic manifold has compatible almost-complex structures, and the space of such structures is path connected.

Proof. For the first part, using a partition of unity gives a Riemannian metric, so the rest follows from the proposition. For the second part, given J_0, J_1 , let $g_i = \omega(\cdot, J_i \cdot)$ for i = 0, 1 and set $g_t = (1 - t)g_0 + tg_1$. Each of these (for $t \in [0, 1]$) is a metric, and gives an ω -compatible \tilde{J}_t by polar decomposition, with $\tilde{J}_0 = J_0$ and $\tilde{J}_1 = J_1$.

The mechanism of the proof also gives

Proposition 2. The set $\mathcal{J}(T_xM,\omega_x)$ of ω_x -compatible complex structures on T_xM is contractible, i.e. $\exists h_t : \mathcal{J}(T_xM,\omega_x) \to \mathcal{J}(T_xM,\omega_x)$ for $t \in [0,1], h_0 = \mathrm{id}, h_1 = \mathcal{J} \to J_0, h_t(J_0) = J_0 \forall t$.

Corollary 2. The space of compatible almost-complex structures on (M, ω) is contractible. It is the space of sections of a bundle whose fibers are contractible by the previous proposition.

More generally, let $E \to M$ be a vector bundle.

Definition 1. A metric on E is a family of positive-definite scalar products $\langle \cdot, \cdot \rangle_x : E_x \times E_x \to \mathbb{R}$. E is symplectic (resp. complex) if there is a family of nondegenerate skew-symmetric forms $\omega_x : E_x \times E_x \to \mathbb{R}$ (resp. complex structures $J_x : E_x \to E_x$, $J_x^2 = -1$).

Then metrics always exist, and every sympletic vector bundle is a complex vector bundle and vice versa.

Proposition 3. For (M, J) an almost-complex manifold, ω_0, ω_1 two symplectic forms compatible with J, $\omega_t = (1-t)\omega_0 + t\omega_1$ is symplectic and J-compatible $\forall t \in [0,1]$ (i.e. the space of J-compatible ω is convex).

Note that

- The space of such ω might be empty, as there are almost complex manifolds (like S^6) which have no symplectic structures.
- Not every manifold has an almost-complex structure (e.g. S^4 , by the Ehresman-Hopf theorem).

Problem. \exists an almost-complex structure $\Leftrightarrow \exists$ a nondegenerate 2-form.

• The proposition works if we put *tame* instead of compatible, i.e. require $\omega(u, Ju) > 0 \ \forall u \neq 0$ but not symmetry.

Proof. ω_t is closed and $\omega_t(u, Ju) = (1 - t)\omega_0(u, Ju) + t\omega_1(u, Ju) > 0 \ \forall u \neq 0$, so ω_t is nondegenerate and thus symplectic. Moreover, $g_t(u, v) = \omega_t(u, Jv) = (1 - t)g_0(u, v) + tg_1(u, v)$ is a metric.

Definition 2. $X \subset (M,J)$ is an almost-complex submanifold if J(TX) = TX, i.e. $\forall x \in X, v \in T_xX$, $Jv \in T_xX$.

Proposition 4. If X is an almost-complex submanifold in compatible (M, ω, J) , then X is symplectic (i.e. $\omega|_X$ is nondegenerate).

Proof. $\forall u \in T_x X, u \neq 0, Ju \in T_x X$ and $\omega(u, Ju) > 0$, so $\forall u \in T_x X \setminus \{0\}, \omega(u, \cdot)|_{T_x X} \in T_x^* X$ is nonzero, giving us an isomorphism $TX \to T^* X$ as desired.

Let $(\mathbb{R}^{2n}, \Omega_0, J_0, g_0)$ be the standard symplectic structure, complex structure, and metric on \mathbb{R}^{2n} .

- Sp $(2n, \mathbb{R})$ is the group of linear symplectomorphisms of $(\mathbb{R}^{2n}, \Omega_0)$, i.e. $\{A \in GL(2n, \mathbb{R}) | \Omega_0(Au, Av) = \Omega(u, v) \ \forall u, v \}$.
- $GL(n,\mathbb{C})$ is the group of \mathbb{C} -linear automorphisms of (\mathbb{R}^{2n},J_0) , i.e. $\{A|AJ_0=J_0A\}$.
- O(2n) is the group of isometries of (\mathbb{R}^{2n}, g_0) , i.e. $\{A|A^tA=1\}$.
- $U(n) = GL(n, \mathbb{C}) \cap O(2n)$.

Proposition 5. $\operatorname{Sp}(2n) \cap O(2n) = \operatorname{Sp}(2n) \cap \operatorname{GL}(n,\mathbb{C}) = O(2n) \cap \operatorname{GL}(n,\mathbb{C}) = U(n).$

Proof. The intersection of any two of these sets is the set of automorphisms preserving two of the three in a compatible triple, and thus must preserve all of them. \Box

- For (V, Ω, J) a symplectic vector space with compatible almost-complex structure, \exists an isomorphism $(V, \Omega, J) \xrightarrow{\sim} (\mathbb{R}^{2n}, \Omega_0, J_0)$.
- The space $\Omega(V)$ of all symplectic structures on V is $\cong \operatorname{GL}(V)/\operatorname{Sp}(V,\Omega_0) \cong \operatorname{GL}(2n,\mathbb{R})/\operatorname{Sp}(2n)$, as GL(V) acts transitively on $\Omega(V)$ by $\phi \mapsto \phi^*\Omega_0$ with stabilizer $\operatorname{Sp}(V,\Omega)$.
- The space $\mathcal{J}(V)$ of almost-complex structures on V is $\cong \mathrm{GL}(V)/\mathrm{GL}(V,J) \cong \mathrm{GL}(2n,\mathbb{R})/\mathrm{GL}(n,\mathbb{C})$.
- The space $\mathcal{J}(V,\Omega)$ of Ω -compatible J's on V is $\cong \operatorname{Sp}(V,\Omega)/\operatorname{Sp}(V,\Omega)\cap GL(V,J)\cong \operatorname{Sp}(2n,\mathbb{R})/U(n)$.
- The constractibility of $\mathcal{J}(V,\Omega)$ is now the fact that $\operatorname{Sp}(2n,\mathbb{R})$ retracts onto its subgroup U(n).

2. Vector Bundles and Connections

For $E \to M$ a real or complex vector bundle, we have an exact sequence

$$(1) 0 \to E_x \to T_p E \stackrel{d\pi}{\to} T_x M \to 0$$

for each $p \in E, x = \pi(p)$. Here, $E_x \subset T_pE$ gives the set of vertical directions: we would like a splitting $T_pE = E_x \oplus (T_pE)^{horiz}$, i.e. a way to transport from one fiber to another. The data required to do this is a connection.

Definition 3. A connection ∇ on E is an \mathbb{R} or \mathbb{C} -linear mapping $C^{\infty}(M, E) \to C^{\infty}(M, T^*M \otimes E) = \Omega^1(M, E)$ s.t. $\nabla (f\sigma) = df \cdot \sigma + f \nabla \sigma$. For $v \in T_xM$, we let ∇_v denote the mapping $\sigma \mapsto \nabla \sigma(v)$.

Choose a local trivialization of E, i.e. a frame of sections e_i s.t. \mathbb{R}^r (or \mathbb{C}^r)× $U \cong E|_U$, $(\xi_1, \ldots, \xi_r) \mapsto \sum \xi_i e_i$. Then $\nabla \sigma = \nabla(\sum \xi_i e_i) = \sum (d\xi_i)e_i + \xi_i \nabla e_i$, i.e. locally $\nabla = d + A$, where $A = (a_{ij}) \in \Omega^1(M, \operatorname{End}(E))$ is a matrix-valued 1-form (the *connection* 1-form) with a_{ij} the component of ∇e_j along e_i . Globally, given $\nabla, \nabla', \nabla(fs) - \nabla'(fs) = f(\nabla s - \nabla's)$, so $\nabla - \nabla'$ is $C^{\infty}(M, E)$ -linear and the space of connections is an affine space modeled on $\Omega^1(M, \operatorname{End}(E))$.

2.1. **Horizontal Distribution.** Let $\sigma: M \to E$ be a section, $d_x \sigma: T_x M \to T_{\sigma(x)} E$ the induced map. Then $\nabla \sigma(x) \in T_x^* M \otimes E_x$ depends only on $d\sigma(x)$. Thus, we can also think of ∇ as a projection $\pi^{\nabla}: T_{\sigma(x)} E \to E_x$, with $\nabla_v \sigma = \pi^{\nabla} (d\sigma(v))$. Then $\mathcal{H}^{\nabla} = \text{Ker } \pi^{\nabla}$ is the horizontal subspace at p(x).

Definition 4. For $\langle \cdot, \cdot \rangle$ a Euclidean or Hermitian metric on E, ∇ is compatible with the metric if $d\langle \sigma, \sigma' \rangle = \langle \nabla \sigma, \sigma' \rangle + \langle \sigma, \nabla \sigma' \rangle$.

As above, locally one can find an orthonormal frame of sections (e_i) , $\langle e_i, e_j \rangle = \delta_{i,j}$. Writing $\nabla = d + A$ in this trivialization, the compatibility becomes

(2)
$$\langle \nabla \xi, \eta \rangle + \langle \xi, \nabla \eta \rangle = \langle d\xi, \eta \rangle + \langle A\xi, \eta \rangle + \langle \xi, d\eta \rangle + \langle \xi, A\eta \rangle$$

Since $d\langle \xi, \eta \rangle = \langle d\xi, \eta \rangle + \langle \xi, d\eta \rangle$, this means that the connection 1-form A must be skew-symmetric (or anti-Hermitian).

Also note that ∇ on E induces a ∇^* on E^* by $d(\phi(\sigma)) = \langle \nabla^* \phi, \sigma \rangle + \langle \phi, \nabla \sigma \rangle$, and similarly for $E \otimes F$, etc.