SYMPLECTIC GEOMETRY, LECTURE 8

Prof. Denis Auroux

1. ALMOST-COMPLEX STRUCTURES

Recall compatible triples (w, g, J), wherein two of the three determine the third (g(u,v) = w(u, Jv),w(u,v) =
g(Ju,v), J(u) = g~ (@(u)) where §,@ are the induced isomorphisms TM — T*M).

Proposition 1. For (M,w) a symplectic manifold with Riemannian metric g, 3 a canonical almost complex
structure J compatible with w.

Idea. Do polar decomposition on every tangent space. O

Corollary 1. Any symplectic manifold has compatible almost-complex structures, and the space of such struc-
tures is path connected.

Proof. For the first part, using a partition of unity gives a Riemannian metric, so the rest follows from the
proposition. For the second part, given Jy, Ji, let g; = w(-, J;+) for i = 0,1 and set g; = (1 — t)go + tg1. Each
of these (for t € [0,1]) is a metric, and gives an w-compatible J; by polar decomposition, with Jy = Jy and
J1 = J1. O

The mechanism of the proof also gives

Proposition 2. The set J(T.M,w,) of w,-compatible complex structures on T, M is contractible, i.e. Jhy :
J(TeM,w,) —» J(TeM,w,) fort € [0,1],hg =id, h1 = T — Jo, ht(Jo) = JoVt.

Corollary 2. The space of compatible almost-complex structures on (M,w) is contractible. It is the space of
sections of a bundle whose fibers are contractible by the previous proposition.

More generally, let E — M be a vector bundle.

Definition 1. A metric on E is a family of positive-definite scalar products {-,-), : Ex x E, — R. E is
symplectic (resp. complex) if there is a family of nondegenerate skew-symmetric forms w, : By X E, — R (resp.
complex structures J, : B, — FE,, Jg% =-1).

Then metrics always exist, and every sympletic vector bundle is a complex vector bundle and vice versa.

Proposition 3. For (M, J) an almost-complex manifold, wy,w1 two symplectic forms compatible with J, wy; =
(1 —t)wo + tw is symplectic and J-compatible Vt € [0,1] (i.e. the space of J-compatible w is convez).

Note that

e The space of such w might be empty, as there are almost complex manifolds (like S®) which have no
symplectic structures.
e Not every manifold has an almost-complex structure (e.g. S*, by the Ehresman-Hopf theorem).

Problem. 3 an almost-complex structure < 3 a nondegenerate 2-form.

e The proposition works if we put tame instead of compatible, i.e. require w(u, Ju) > 0 Vu # 0 but not
symmetry.

Proof. wy is closed and wy(u, Ju) = (1 — t)wo(u, Ju) + twr (u, Ju) > 0 Yu # 0, so w; is nondegenerate and thus
symplectic. Moreover, g:(u,v) = wi(u, Jv) = (1 — t)go(u, v) + tg1(u,v) is a metric. O

Definition 2. X C (M, J) is an almost-complex submanifold if J(TX) =TX, i.e. Ve € X, v € T, X, Jv e T, X.
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Proposition 4. If X is an almost-complex submanifold in compatible (M,w, J), then X is symplectic (i.e. w|x
is nondegenerate).

Proof. Yu € T, X,u # 0, Ju € T, X and w(u, Ju) > 0, so Vu € T, X \ {0}, w(u, )|, x € TFX is nonzero, giving
us an isomorphism T'X — T* X as desired. (Il

Let (R?",Qq, Jo, go) be the standard symplectic structure, complex structure, and metric on R?".
e Sp(2n,R) is the group of linear symplectomorphisms of (R*", ), i.e. {A € GL(2n,R)|Q(Au, Av) =
Q(u,v) Yu,v}.
e GL(n,C) is the group of C-linear automorphisms of (R?", Jy), i.e. {A|AJy = JoA}.
e O(2n) is the group of isometries of (R?", gp), i.e. {AJA'A = 1}.
e U(n) = GL(n,C) N O(2n).

Proposition 5. Sp(2n) N O(2n) = Sp(2n) N GL(n,C) = O(2n) N GL(n,C) = U(n).

Proof. The intersection of any two of these sets is the set of automorphisms preserving two of the three in a
compatible triple, and thus must preserve all of them. ([l

e For (V,Q,J) a symplectic vector space with compatible almost-complex structure, 3 an isomorphism
(V,Q,J) = (R*,Qq, Jo).

e The space (V) of all symplectic structures on V' is =2 GL(V')/Sp(V, Qo) = GL(2n,R)/Sp(2n), as GL(V)
acts transitively on Q(V) by ¢ — ¢*Qq with stabilizer Sp(V, Q).

e The space J (V) of almost-complex structures on V' is = GL(V)/GL(V, J) = GL(2n,R)/GL(n, C).

e The space J(V,Q) of Q-compatible J’s on V is 2 Sp(V,Q)/Sp(V, Q) N GL(V, J) = Sp(2n,R) /U (n).

e The constractibility of 7(V, Q) is now the fact that Sp(2n,R) retracts onto its subgroup U(n).

2. VECTOR BUNDLES AND CONNECTIONS
For E — M a real or complex vector bundle, we have an exact sequence
(1) 0— E, »T,E B T,M —0
for each p € E,x = n(p). Here, E, C T,E gives the set of vertical directions: we would like a splitting

T,E =E; ® (TpE)h"”Z, i.e. a way to transport from one fiber to another. The data required to do this is a
connection.

Definition 3. A connection V on E is an R or C-linear mapping C*°(M, E) — C*®°(M,T*M ®E) = Q(M, E)
s.t. V(fo)=df -oc+ fVo. Forve T, M, we let V, denote the mapping o — Vo(v).

Choose a local trivialization of E, i.e. a frame of sections e; s.t. R” (or C")xU 2 E|y, (1,...,&) — Y. &€,
Then Vo = V(Y &ei) = >.(dé)e; + & Ve, ie. locally V. = d + A, where A = (a;;) € Q'(M,End(FE))
is a matrix-valued 1-form (the connection 1-form) with a;; the component of Ve; along e;. Globally, given
V,V'.V(fs) =V'(fs) = f(Vs = V’'s), so V—V'is C°(M, E)-linear and the space of connections is an affine
space modeled on Q'(M,End(E)).

2.1. Horizontal Distribution. Let 0 : M — E be a section, dyo : T, M — T,,)E the induced map. Then

Vo(z) € Ty M ® E, depends only on do(x). Thus, we can also think of V as a projection 7V : T, E — E,,
with V,0 = 7V (do(v)). Then HY = Ker «V is the horizontal subspace at p(x).

Definition 4. For (-,-) a Euclidean or Hermitian metric on E, V is compatible with the metric if d{o,o’) =

(Vo,0’) + {0, Vd').

As above, locally one can find an orthonormal frame of sections (e;), {(e;,e;) = d; ;. Writing V =d+ A in
this trivialization, the compatibility becomes

(2) (V& m) + (&, V) = (d&,m) + (A, n) + (§, dn) + (£, An)

Since d(§,n) = (d&,n) + (€,dn), this means that the connection 1-form A must be skew-symmetric (or anti-
Hermitian).
Also note that V on E induces a V* on E* by d(¢(0)) = (V*¢,0) + (¢, Vo), and similarly for £ ® F, etc.



