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SYMPLECTIC GEOMETRY, LECTURE 7 

Prof. Denis Auroux 

1. Floer homology 

For a Hamiltonian diffeomorphism f : (M, ω) (M, ω), f = φH 
1 ,Ht : M R 1-periodic in t, we want to look → →

for fixed points of f , i.e. 1-periodic orbits of XH , x�(t) = XHt (x(t)). We consider the Floer complex CF ∗(f), 
whose basis are 1-periodic orbits; these correspond to critical points of the action functional AH on a covering 
of the free loop space Ω(M). The differential ’counts’ solutions of Floer’s equations 

(1) u : R × S1 M, 
∂u 

+ J(u(s, t))( 
∂u 

(u)) = 0 → 
∂s ∂t 

− XHt 

such that lims→±∞ u(s, ·) = x± (1-periodic orbits). The solutions are formal gradient flow lines of AH between 
the critical points x±. 

Theorem 1 (Arnold’s conjecture). If the fixed points of f are nondegenerate, then #Fix(f) ≥ dim Hi(M),i 
i.e. #Fix(f) = rk CF ∗ ≥ rk HF ∗ = rk H∗(CF ∗, ∂) = rkH∗(M). 

1.1. Lagrangian intersections. There is a notion of Lagrangian Floer homology, which is not always defined 
(in fact, there are explicit obstructions to its existence). The idea is to count intersections of Lagrangian 
submanifolds L, L� ⊂ M in a manner which is invariant under Hamiltonian deformations (isotopies). Assume 
that L and L� are transverse (if not, e.g. when L = L�, replace the submanifold L by the graph Lt of an 
exact 1-form in T ∗L). To define Floer homology, one defines a complex CF ∗(L, L�) whose basis is the set of 
intersection points, and whose differential is given by ∂p = q np,qq, where np,q counts solutions to 

(2) u : R × [0, 1] M, u(R × 0) ⊂ L, u(R × 1) ⊂ L�, 
∂u 

+ J 
∂u 

= 0 → 
∂s ∂t 

Under suitable assumptions, one finds that ∂2 = 0, giving us a Floer homology 

(3) HF ∗(L, L�) = H∗(CF ∗(L, L�), ∂) 

which is invariant under Hamiltonian deformations of L, L�. Moreover, rk HF ∗ ≤ rk CF ∗ = |L ∩ L�|. 

Theorem 2 (Floer, Oh, Fukaya-Oh-Ohta-Ono). Given a compact Lagrangian submanifold L ⊂ M which is 
”relatively spin” (i.e. w2(TL) ∈ Im{i∗ : H2(M, Z/2Z) H2(L, Z/2Z)}) s.t. i : H1(L, Q) H1(M, Q) is→ ∗ � →
injective, then ∀ψ ∈ Ham(M, ω) s.t. ψ(L) intersects L transversely, #(L ∩ ψ(L)) ≥ dim Hi(L, Q). 

Remark. Applying this theorem to the diagonal Δ = Δ(M) ⊂ M × M and the graph of a Hamiltonian 
diffeomorphism f on M , one recovers Arnold’s conjecture. 

2. Almost-Complex Structures


To begin, we will study complex structures on vector spaces.


Definition 1. A complex structure on a vector space V is an endomorphism J : V → V s.t. J2 = −I. 
Thinking of this J as multiplication by i turns V into a complex vector space, (x + iy)v = xv + yJv. If V is 
a symplectic vector space with symplectic form Ω, a complex structure is compatible if G(u, v) = Ω(u, Jv) is a 
positive symmetric inner product. Note that being symmetric is equivalent to Ω(Ju, Jv) = Ω(u, v), and being 
positive is precisely Ω(u, Ju) > 0 ∀u = 0� . 
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Example. Let V = (R2n , Ω0) be the standard symplectic vector space, with standard basis e1, . . . , en, f1, . . . , fn, 
and define J0 by ei �→ fi, fi �→ −ei. Then 

(4) J0
2 = −id , G0(u, v) = Ω0(u, J0v) = ⇒ G0(ei, ei) = 1, G0(fi, fi) = 1 

and all other pairings are 0. In matrix terms, Ω0 = −
0 
I

I 
0 

, and J0 = 
I 
0 −

0 
I 

, so G0 = Ω0J0 = I. 

This gives us a natural isomorphism with Cn . 

Proposition 1. If (V, Ω) is a symplectic vector space, ∃ a compatible J . Moreover, given any positive inner 
product �·, ·� on V , we can build an Ω-compatible complex structure on V canonically (though it has no direct 
relation to the given inner product). 

Proof. For the first part, taking J = J0 in a standard basis gives the desired endomorphism. For the second 
part, by the nondegeneracy of Ω, we have isomorphisms u �→ Ω(u, ) and u �→ �u, ·� from V to V ∗. We thus ·
obtain an endomorphism A = ��−1 ◦ Ω s.t. Ω(u, v) = �Au, v�. A is invertible and skew-symmetric w.r.t. ��, 
i.e. A∗ = −A (since Ω(v, u) = �Av, u� = �v, A∗u� = �A∗u, v� = −Ω(u, v) = −�Au, v�). Thus, AA∗ = −A2 is 
symmetric and positive definite, therefore diagonalizable with real, strictly positive eigenvalues. This implies 
the existence of a square root 

√
AA∗(= diag(

√
λi)), so define J = (

√
AA∗)−1A. (Note that the decomposition 

A = 
√
AA∗J gives a ”polar decomposition” of A.) A commutes with 

√
AA∗: letting Vi be the eigenspace of 

AA∗ with eigenvalue λi, or similarly that of 
√
AA∗ with eigenvalue 

√
λi, we find that, 

(5) ∀v ∈ Vi, (AA∗)Av = −A3 v = A(AA∗)v = λiAv = ⇒ Av ∈ Vi 

So J also commutes with A and with 
√
AA∗, and thus is skew-symmetric 

(6) J∗ = A∗(
√
AA∗)−1 = −A(

√
AA∗)−1 = −J 

and orthogonal 

(7) J∗J = A∗(
√
AA∗)−1(

√
AA∗)−1A = id 

In particular, J2 = −J∗J = −id. For compatibility, note that 
Ω(Ju, Jv) = �AJu, Jv� = �JAu, Jv� = �Au, v� = Ω(u, v) 

(8) Ω(u, Ju) = �Au, Ju� = �−JAu, u� = �−(
√
AA∗)−1AAu, u� 

= �(
√
AA∗)−1(AA∗)u, u� = �(

√
AA∗)u, u� > 0 

thus completing the proof. � 

Remark. Note that G(u, v) = Ω(u, Jv) = �
√
AA∗u, v�, so if �·, ·� was already compatible with Ω, then AA∗ = 

I, J = A, G = �·, ·�. 

Definition 2. An almost-complex structure on a manifold M is J ∈ End(TM) s.t. J2 = −I (i.e. ∀x ∈ M, Jx 

is a complex structure on TxM). If M = (M, ω) is a symplectic manifold, J is compatible if ∀x ∈ M, Jx is 
ωx-compatible, with associated Riemannian metric gx(u, v) = ωx(u, Jxv). We say that (ω, g, J) is a compatible 
triple, with any two determining the third. 


