SYMPLECTIC GEOMETRY, LECTURE 7

Prof. Denis Auroux

1. Floer homology

For a Hamiltonian diffeomorphism $f:(M,\omega)\to (M,\omega), f=\phi_H^1, H_t:M\to\mathbb{R}$ 1-periodic in t, we want to look for fixed points of f, i.e. 1-periodic orbits of X_H , $x'(t)=X_{H_t}(x(t))$. We consider the Floer complex $CF^*(f)$, whose basis are 1-periodic orbits; these correspond to critical points of the action functional \mathcal{A}_H on a covering of the free loop space $\Omega(M)$. The differential 'counts' solutions of Floer's equations

(1)
$$u: \mathbb{R} \times S^1 \to M, \ \frac{\partial u}{\partial s} + J(u(s,t))(\frac{\partial u}{\partial t} - X_{H_t}(u)) = 0$$

such that $\lim_{s\to\pm\infty} u(s,\cdot) = x_{\pm}$ (1-periodic orbits). The solutions are formal gradient flow lines of \mathcal{A}_H between the critical points x_{\pm} .

Theorem 1 (Arnold's conjecture). If the fixed points of f are nondegenerate, then $\#\text{Fix}(f) \ge \sum_i \dim H^i(M)$, i.e. $\#\text{Fix}(f) = \text{rk } CF^* \ge \text{rk } HF^* = \text{rk } H^*(CF^*, \partial) = \text{rk}H^*(M)$.

1.1. Lagrangian intersections. There is a notion of Lagrangian Floer homology, which is not always defined (in fact, there are explicit obstructions to its existence). The idea is to count intersections of Lagrangian submanifolds $L, L' \subset M$ in a manner which is invariant under Hamiltonian deformations (isotopies). Assume that L and L' are transverse (if not, e.g. when L = L', replace the submanifold L by the graph L_t of an exact 1-form in T^*L). To define Floer homology, one defines a complex $CF^*(L, L')$ whose basis is the set of intersection points, and whose differential is given by $\partial p = \sum_q n_{p,q} q$, where $n_{p,q}$ counts solutions to

(2)
$$u: \mathbb{R} \times [0,1] \to M, u(\mathbb{R} \times 0) \subset L, u(\mathbb{R} \times 1) \subset L', \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} = 0$$

Under suitable assumptions, one finds that $\partial^2 = 0$, giving us a Floer homology

(3)
$$HF^*(L, L') = H^*(CF^*(L, L'), \partial)$$

which is invariant under Hamiltonian deformations of L, L'. Moreover, $\operatorname{rk} HF^* \leq \operatorname{rk} CF^* = |L \cap L'|$.

Theorem 2 (Floer, Oh, Fukaya-Oh-Ohta-Ono). Given a compact Lagrangian submanifold $L \subset M$ which is "relatively spin" (i.e. $w_2(TL) \in \text{Im}\{i^*: H^2(M, \mathbb{Z}/2\mathbb{Z}) \to H^2(L, \mathbb{Z}/2\mathbb{Z})\}$) s.t. $i_*: H_1(L, \mathbb{Q}) \to H_1(M, \mathbb{Q})$ is injective, then $\forall \psi \in \text{Ham}(M, \omega)$ s.t. $\psi(L)$ intersects L transversely, $\#(L \cap \psi(L)) \geq \sum \dim H_i(L, \mathbb{Q})$.

Remark. Applying this theorem to the diagonal $\Delta = \Delta(M) \subset M \times M$ and the graph of a Hamiltonian diffeomorphism f on M, one recovers Arnold's conjecture.

2. Almost-Complex Structures

To begin, we will study complex structures on vector spaces.

Definition 1. A complex structure on a vector space V is an endomorphism $J: V \to V$ s.t. $J^2 = -I$. Thinking of this J as multiplication by i turns V into a complex vector space, (x+iy)v = xv + yJv. If V is a symplectic vector space with symplectic form Ω , a complex structure is compatible if $G(u,v) = \Omega(u,Jv)$ is a positive symmetric inner product. Note that being symmetric is equivalent to $\Omega(Ju,Jv) = \Omega(u,v)$, and being positive is precisely $\Omega(u,Ju) > 0 \ \forall u \neq 0$.

Example. Let $V = (\mathbb{R}^{2n}, \Omega_0)$ be the standard symplectic vector space, with standard basis $e_1, \ldots, e_n, f_1, \ldots, f_n$, and define J_0 by $e_i \mapsto f_i, f_i \mapsto -e_i$. Then

(4)
$$J_0^2 = -id , G_0(u, v) = \Omega_0(u, J_0 v) \implies G_0(e_i, e_i) = 1, G_0(f_i, f_i) = 1$$

and all other pairings are 0. In matrix terms, $\Omega_0 = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$, and $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, so $G_0 = \Omega_0 J_0 = I$. This gives us a natural isomorphism with \mathbb{C}^n .

Proposition 1. If (V,Ω) is a symplectic vector space, \exists a compatible J. Moreover, given any positive inner product $\langle \cdot, \cdot \rangle$ on V, we can build an Ω -compatible complex structure on V canonically (though it has no direct relation to the given inner product).

Proof. For the first part, taking $J=J_0$ in a standard basis gives the desired endomorphism. For the second part, by the nondegeneracy of Ω , we have isomorphisms $u\mapsto\Omega(u,\cdot)$ and $u\mapsto\langle u,\cdot\rangle$ from V to V^* . We thus obtain an endomorphism $A=\langle\rangle^{-1}\circ\Omega$ s.t. $\Omega(u,v)=\langle Au,v\rangle$. A is invertible and skew-symmetric w.r.t. $\langle\rangle$, i.e. $A^*=-A$ (since $\Omega(v,u)=\langle Av,u\rangle=\langle V,A^*u\rangle=\langle A^*u,v\rangle=-\Omega(u,v)=-\langle Au,v\rangle$). Thus, $AA^*=-A^2$ is symmetric and positive definite, therefore diagonalizable with real, strictly positive eigenvalues. This implies the existence of a square root $\sqrt{AA^*}(=\operatorname{diag}(\sqrt{\lambda_i}))$, so define $J=(\sqrt{AA^*})^{-1}A$. (Note that the decomposition $A=\sqrt{AA^*}J$ gives a "polar decomposition" of A.) A commutes with $\sqrt{AA^*}$: letting V_i be the eigenspace of AA^* with eigenvalue λ_i , or similarly that of $\sqrt{AA^*}$ with eigenvalue $\sqrt{\lambda_i}$, we find that,

(5)
$$\forall v \in V_i, (AA^*)Av = -A^3v = A(AA^*)v = \lambda_i Av \implies Av \in V_i$$

So J also commutes with A and with $\sqrt{AA^*}$, and thus is skew-symmetric

(6)
$$J^* = A^* (\sqrt{AA^*})^{-1} = -A(\sqrt{AA^*})^{-1} = -J$$

and orthogonal

(7)
$$J^*J = A^*(\sqrt{AA^*})^{-1}(\sqrt{AA^*})^{-1}A = id$$

In particular, $J^2 = -J^*J = -id$. For compatibility, note that

(8)
$$\Omega(Ju, Jv) = \langle AJu, Jv \rangle = \langle JAu, Jv \rangle = \langle Au, v \rangle = \Omega(u, v)$$

$$\Omega(u, Ju) = \langle Au, Ju \rangle = \langle -JAu, u \rangle = \langle -(\sqrt{AA^*})^{-1}AAu, u \rangle$$

$$= \langle (\sqrt{AA^*})^{-1}(AA^*)u, u \rangle = \langle (\sqrt{AA^*})u, u \rangle > 0$$

thus completing the proof.

Remark. Note that $G(u,v) = \Omega(u,Jv) = \langle \sqrt{AA^*}u,v \rangle$, so if $\langle \cdot,\cdot \rangle$ was already compatible with Ω , then $AA^* = I, J = A, G = \langle \cdot,\cdot \rangle$.

Definition 2. An almost-complex structure on a manifold M is $J \in \text{End}(TM)$ s.t. $J^2 = -I$ (i.e. $\forall x \in M, J_x$ is a complex structure on T_xM). If $M = (M, \omega)$ is a symplectic manifold, J is compatible if $\forall x \in M, J_x$ is ω_x -compatible, with associated Riemannian metric $g_x(u, v) = \omega_x(u, J_xv)$. We say that (ω, g, J) is a compatible triple, with any two determining the third.