SYMPLECTIC GEOMETRY, LECTURE 7

Prof. Denis Auroux

1. FLOER HOMOLOGY

For a Hamiltonian diffeomorphism f : (M,w) — (M,w), f = ¢k, H; : M — R 1-periodic in ¢, we want to look
for fixed points of f, i.e. 1-periodic orbits of Xp, /() = Xg, (x(t)). We consider the Floer complex CF*(f),
whose basis are 1-periodic orbits; these correspond to critical points of the action functional Ay on a covering
of the free loop space (M ). The differential 'counts’ solutions of Floer’s equations
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such that lims_, . u(s, ) = 4 (1-periodic orbits). The solutions are formal gradient flow lines of Ax between

the critical points z4.
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Theorem 1 (Arnold’s conjecture). If the fized points of f are nondegenerate, then #Fix(f) > Y, dim H* (M),
i.e. #Fix(f) =1k CF* >rk HF* =rk H*(CF*,0) = rkH*(M).

1.1. Lagrangian intersections. There is a notion of Lagrangian Floer homology, which is not always defined
(in fact, there are explicit obstructions to its existence). The idea is to count intersections of Lagrangian
submanifolds L, L’ C M in a manner which is invariant under Hamiltonian deformations (isotopies). Assume
that L and L’ are transverse (if not, e.g. when L = L’ replace the submanifold L by the graph L; of an
exact 1-form in T*L). To define Floer homology, one defines a complex CF*(L, L') whose basis is the set of
intersection points, and whose differential is given by dp = > ¢ "p.as where n,, , counts solutions to
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s

Under suitable assumptions, one finds that 9% = 0, giving us a Floer homology
(3) HF*(L,L')= H*(CF*(L,L"),0)
which is invariant under Hamiltonian deformations of L, L’. Moreover, rk HF* <tk CF* = |LNL/|.

Theorem 2 (Floer, Oh, Fukaya-Oh-Ohta-Ono). Given a compact Lagrangian submanifold L C M which is
relatively spin” (i.e. wao(TL) € Im{i* : H*(M,Z/2Z) — H?*(L,Z/27)}) s.t. i. : Hi(L,Q) — Hi(M,Q) is
injective, then Y € Ham(M,w) s.t. (L) intersects L transversely, #(L Np(L)) > > dim H;(L,Q).

Remark. Applying this theorem to the diagonal A = A(M) C M x M and the graph of a Hamiltonian
diffeomorphism f on M, one recovers Arnold’s conjecture.

2. ALMOST-COMPLEX STRUCTURES

To begin, we will study complex structures on vector spaces.

Definition 1. A complex structure on a vector space V is an endomorphism J : V. — V s.t. J? = —1I.
Thinking of this J as multiplication by i turns V into a complex vector space, (x + iy)v = xv +yJv. If V is
a symplectic vector space with symplectic form Q, a complex structure is compatible if G(u,v) = Q(u, Jv) is a
positive symmetric inner product. Note that being symmetric is equivalent to Q(Ju, Jv) = Q(u,v), and being
positive is precisely Q(u, Ju) > 0 Yu # 0.



2 Prof. Denis Auroux

Ezample. Let V = (R?", ) be the standard symplectic vector space, with standard basis e1,...,en, f1,.. ., fn,
and define Jy by e; — f;, fi — —e;. Then

(4) Jg = —id , Go(u,v) = Qo(u, Jov) == Golei,e;) = 1,Go(fi, fi) =1

and all other pairings are 0. In matrix terms, Qo = ( _OI é ), and Jy = ( ? _OI ), so Gg = QoJy = 1.

This gives us a natural isomorphism with C”.

Proposition 1. If (V,Q) is a symplectic vector space, 3 a compatible J. Moreover, given any positive inner
product {-,-) on V, we can build an Q2-compatible complex structure on V canonically (though it has no direct
relation to the given inner product).

Proof. For the first part, taking J = Jy in a standard basis gives the desired endomorphism. For the second
part, by the nondegeneracy of €, we have isomorphisms u — Q(u,-) and u — (u,-) from V to V*. We thus
obtain an endomorphism A = {)7! 0 Q s.t. Q(u,v) = (Au,v). A is invertible and skew-symmetric w.r.t. (),
ie. A* = —A (since Q(v,u) = (Av,u) = (v, A*u) = (A*u,v) = —Q(u,v) = —(Au,v)). Thus, AA* = —A? is
symmetric and positive definite, therefore diagonalizable with real, strictly positive eigenvalues. This implies
the existence of a square root vV AA*(= diag(v/\;)), so define J = (vVVAA*)~tA. (Note that the decomposition
A = AA*J gives a "polar decomposition” of A.) A commutes with v AA*: letting V; be the eigenspace of
AA* with eigenvalue )\;, or similarly that of v/ AA* with eigenvalue v/);, we find that,

(5) Yo € Vi, (AA")Av = —A%v = A(AA*)v = \jAv = Av eV
So J also commutes with A and with v/AA*, and thus is skew-symmetric
(6) J' = A" (VAA) T = —A(VAA) T = T
and orthogonal
(7) J*J = A*(VAA*) N (VAA) T A =id
In particular, J2 = —J*J = —id. For compatibility, note that

Q(Ju, Jv) = (AJu, Jv) = (JAu, Jv) = (Au,v) = Q(u,v)
(8) Qu, Ju) = (Au, Ju) = (—J Au,u) = (—(VAA) "L AAu, u)

= (VAA) Y (AL u, u) = (VAA ) u,u) > 0

thus completing the proof. ]

Remark. Note that G(u,v) = Q(u, Jv) = (VAA*u,v), so if {(-,-) was already compatible with , then AA* =
1J=AG=(,).

Definition 2. An almost-complex structure on a manifold M is J € End(TM) s.t. J> = —I (i.e. Vo € M, J,
is a complex structure on T, M ). If M = (M,w) is a symplectic manifold, J is compatible if Vx € M, J, is
wy-compatible, with associated Riemannian metric g, (u,v) = wy(u, Jyv). We say that (w,g,J) is a compatible
triple, with any two determining the third.



