
� 

SYMPLECTIC GEOMETRY, LECTURE 5 

Prof. Denis Auroux 

Last time we proved: 

Theorem 1 (Moser). 
(M, ω1). 

Let M be a compact manifold, (ωt) symplectic forms, [ωt] constant = ⇒ (M, ω0) ∼= 

Theorem 2 (Darboux). Locally, any symplectic manifold is locally isomorphic to (R2n, ω0). 

1. Tubular Neighborhoods 

Let Mn ⊃ Xk be a submanifold with inclusion map i. Then we get a map dxi : TxX �→ TxM , with associated 
normal space NxX = TxM/TxX. Note that if there is a metric, one can identify this with the orthogonal space 
to X at x. Putting all these spaces together, we get a normal bundle NX = {(x, v)|x ∈ X, v ∈ NxX} with zero 
section i0 : X → NX, x �→ (x, 0). 

Theorem 3. ∃U0 a neighborhood of X in NX (via the 0-section) and U1 a neighborhood of X in M s.t. 
∃φ : U0 

∼ 
U1 a diffeomorphism. → 

Proof. (Idea) Equip M with a Riemannian metric g, so NxX 
∼ 
TxX

⊥ ⊂ TxM . Then, given x ∈ X, v ∈ NxX� →
for |v| sufficiently small (|v| = g(v, v) < �), we obtain an exponential function expx(v) (defined by considering 
a small geodesic segment with origin x and tangent vector v). We obtain a map U0 → M, (x, v) �→ exp (v). For x

x ∈ X, T(x,0)(NX) = TxX ⊕ NxX and 

(1) d(x,0) exp(u, v) = u + v ∈ TxX ⊕ TxX
⊥ 

this giving us a local diffeomorphism near the 0-section. Thus, locally on some neighborhood of the 0-section 
in NX, exp induces a diffeomorphism onto exp(U0) = neighborhood of X in M . � 

Let U1 = {expx(v)| |v| < ��(x)} ⊂ M be a tubular neighborhood of X in M as constructed above, with 
U0 ⊂ NX the corresponding neighborhood of the zero section. Via the projection π : U0 → X, whose fibers are 

balls in Rn−k, we see that U1 retracts onto X, i.e. we have a null-homotopic map U1 
π 
X 

i 
U1.→ → 

Corollary 1. i∗ : H∗(U1, R) H∗(X, R) is an isomorphism. → 

Proposition 1. β ∈ Ω�(U), dβ = 0, i∗β = β|X = 0 =⇒ ∃µ ∈ Ω�−1(U), β = dµ and µx = 0 ∀x ∈ X. 

Proof. Identify U ∼= U0 ⊂ NX, set ρt : (x, v) �→ (x, tv), and let � 1 

(2) µ(x,v) = ρt 
∗(i(0,v)β)dt 

0 

Then µ = 0 on the zero section, and � 1 

(3) dµ = ρ∗ 
t (diXt β)dt 

0 

where Xt(x, tv) = (0, v). Since β is closed, diXt β = LXt β, so � 1 

(4) dµ = 
d 

(ρ∗ 
t β)dt = ρ∗ 

1β − ρ∗ 
0β = β − π∗i∗β = β 

dt0 

Theorem 4 (Local Moser). Let X �→ M be a submanifold, ω0, ω1 symplectic forms on M s.t. (ω0)p = (ω1)p∀p ∈ 
X. Then ∃ neighborhoods U0, U1 ⊃ X and φ : U0 

∼ 
U1 s.t. φ∗ω1 = ω0 and φ X = id.→ |
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That is, we have a symplectomorphism (U0, ω0) 
∼ (U1, ω1) commuting with the inclusion of X.→ 

Proof. Let U0 be a tubular neighborhood of X. Since ω1 − ω0 is closed and is 0 on X, by the above proposition 
we have a form µ ∈ Ω1(U0) s.t. ω1 − ω0 = dµ and µ is 0 along X. Now, let ωt = (1 − t)ω0 + tω1: these form a 
family of closed two-forms which are ω0 along X and thus nondegenerate at X. Since nondegeneracy is an open 
condition, ∃U0

� ⊂ U0 on which ωt is symplectic ∀t. ∃vt a vector field on U0
� s.t. ivt ωt = −µ with vt = 0 along 

X. Letting ρt be the flow of vt, we find that ρt is the identity along X, and ∃ a neighborhood U �� on which the 0 
flow is well defined. Finally, 

(5) 
d 

(ρ∗ 
t ωt) = ρ∗ 

t Lvt ωt + 
dωt = ρt 

∗(−dµ + (ω1 − ω0)) = 0 
dt dt 

Proposition 2. Let X � (M, ω) be a Lagrangian submanifold. Then NX 
∼ 
T ∗X.→ → 

Proof. E ⊂ (V, Ω) a Lagrangian subspace = ⇒ Ω : V → V ∗ � E∗, v �→ Ω(v, ·) is onto with kernel ∼ = E,∼ 
= E⊥Ω 

so V/E ∼ �= E∗. 

Theorem 5 (Weinstein’s Lagrangian Neighborhood). Let (M, ω) be a symplectic manifold, i : X � M a closed →
Lagrangian submanifold, i0 : X → (T ∗X, ω0) the zero-section. Then ∃U0 a neighborhood of X in T ∗X and U a 
neighborhood of X in M s.t. we have a symplectomorphism (U0, ω0) 

∼ (U, ω) which is the identity on X.→ 

Proof. NX ∼= T ∗X, so ∃N0 ⊃ X in T ∗X, N ⊃ X in M , and a diffeomorphism ψ : N0 
∼ 
N which preserves X.→

Now, let ω0 be the canonical form on T ∗X and ω1 = ψ∗ω. These are both sympectic forms on N0 ⊂ T ∗X s.t. 
the zero section X is Lagrangian for both. 

We claim that we can build (canonically) a family of isomorphisms Lp : TpN0 → TpN0 for p ∈ X s.t. 
Lp|TpX = id and (Lp

∗ω1)p = (ω0)p. By Whitney’s extension theorem, ∃ a neighborhood N � ⊃ X and an 
embedding h : N � � N0 s.t.→ 

(6) h|X = id, dhp = Lp∀p ∈ X 

(Idea: use a Riemannian metric, and set h(p, ξ) = expp,0 Lp(0, ξ)). Then ∀p ∈ X, (h∗ω1)p = (ω0)p, so we can use 

local Moser for h∗ω1 and ω0. We therefore obtain U0, U1 ⊃ X and a local symplectomorphism f : (U0, ω0) 
∼ 

(U1, h
∗ω1). Setting φ = ψ ◦ h ◦ f gives us the desired result. 

→ 

To prove the claim, decompose T(p,0)N0 = TpX ⊕ Tp 
∗X, with a chosen basis for TpX and the dual basis for 

T ∗X. We have two symplectic forms on this space, namely ω0 = 
I 
0 −

0 
I 

, ω = 
B 
0 −

C
Bt 

. That is, we p 

know that 

(7) ω0((v1, ξ1), (v2, ξ2)) = ξ1(v2) − ξ2(v1) 

and ω|TpX = 0. We want to find a matrix L = 
I 
0 

∗ 
s.t. LtωL = ω0. Setting ∗ 

I 2
1 B−1CB−t 

(8) L = 0 
− 

B−t 

gives the desired matrix: furthermore, the construction doesn’t depend on the choice of basis. � 


