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SYMPLECTIC GEOMETRY, LECTURE 2 

Prof. Denis Auroux 

1. Homology and Cohomology 

Recall from last time that, for M a smooth manifold, we produced a graded differential algebra (Ω∗(M), ∧, d) 
giving us a cohomology H∗(M) with cup product [α] ∪ [β] = [α ∧ β] (which is well-defined since d(α ∧ β) = 
dα ∧ β + (−1)deg αα ∧ dβ and (α + dη) ∧ β = α ∧ β + dη ∧ β). Furthermore, we obtain a pairing with homology: 
for Σ ⊂ M a p-dimensional, oriented, closed submanifold with associated class [Σ] ∈ Hp(M), we define 

(1) �[α], [Σ]� = α 
Σ 

for [α] ∈ Hp(M, R), and extend this by linearity to give a pairing with all of Hp(M). That this is well-defined 
is a consequence of Stokes’ theorem: 

(2) dα = α 
Σ ∂Σ 

Remark. A form is closed its integral on submanifolds depends only the homology class of the submanifold. ⇔ 

Furthermore, if M n is compact, closed, and oriented, we have a nondegenerate pairing 

(3) Hp(M, R) ⊗ Hn−p(M, R) → R, [α] ⊗ [β] �→ 
M 

α ∧ β 

which induces the Poincaré duality Hn−p(M, R) Hp(M, R). In the noncompact case, we have the same →
statement using cohomology with compact support HC

n−p(M, R). 

2. Symplectic Vector Spaces 

Let V be a f.d. vector space /R. 

Definition 1. A symplectic structure on V is a bilinear, non-degenerate, skew-symmetric pairing Ω : V × V →
R. That is, as a matrix, it is invertible and skew-symmetric. 

Example. For R2n with basis {ei}n we have a standard symplectic form given by Ω0(ei, ej ) = i=1, {fi}n
i=1, � � 

Ω0(fi, fj ) = 0 ∀i, j, Ω0(ei, fj ) = δi,j = −Ω0(fj , ei). As a matrix, it is given by −
0 
In 

I
0 
n . 

Definition 2. For E ⊂ V a linear subspace, Ω a bilinear form, the orthogonal complement of E is EΩ = E⊥ = 
{v ∈ V |Ω(u, v) = 0 ∀u ∈ E}. 

Note that Ω is non-degenerate V Ω = {0}.⇔ 

Example. In R2n with basis as above, 

Span{e1}Ω = Span{e1, . . . , en, f2, . . . , fn} 

(4) Span{e1, f1}Ω = Span{e2, . . . , en, f2, . . . , fn} 

Span{e1, . . . , en}Ω = Span{e1, . . . , en} 

Definition 3. A standard (symplectic) basis of (V 2n , Ω) is a basis ({ei}, {fi}) satisfying the above. 

Theorem 1. For (V n , Ω) a symplectic vector space, ∃ a standard basis. 
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Proof. We induce on n: the base case is trivial. Choose some vector e1 ∈ V � {0}. By nondegeneracy, 
Ω(ei, ) = 0 =⇒ ∃f1 s.t. Ω(e1, f1) = 1. Let W = Span{e1, f1}Ω: then Ω W is symplectic since u ∈ W, Ω(u, q) = 
0 ∀w 

·
∈ 
�
W = ⇒ Ω(u, e1) = 0, Ω(u, f1) = 0 = ⇒ u = 0. Furthermore, V 

|
= Span{e1, f1} ⊕ W . To see this, note 

first that, if v = ae1 + bf1 ∈ W, Ω(e1, v) = b = 0 and Ω(f1, v) = a = 0, so W ∩ Span{e1, f1} = ∅. Secondly, for 
v ∈ V , we can write v = w + ae1 + bf1, where w = v − Ω(e1, v)f1 + Ω(f1, v)e1 ∈ W . Since W has dimension 
n − 2, we are done. � 

Corollary 1. V symplectic = V is even-dimensional and symplectomorphic to (R2n , Ω0).⇒ 

We denote the symplectic automorphisms of (V, Ω) by Sp(V, Ω) = Sp(2n, R). 

=Remark. dim EΩ = dim V − dim E because V 
∼

V ∗ → E∗, v �→ Ω(v, ) �→ Ω(v, ) E is surjective with kernel → · · |
EΩ . 

Definition 4. E ⊂ V is a symplectic subspace if Ω|E is nondegenerate, e.g. in a standard basis E is the span 
of 

(5) (e1, f1, . . . , ek, fk) 

Problem. Prove that E is a symplectic subspace ⇔ E ∩ EΩ = {0} ⇔ V = E ⊕ EΩ . 

Definition 5. E ⊂ V is an isotopic (resp. coisotopic, lagrangian) subspace if E ⊂ EΩ (resp. EΩ ⊂ E, EΩ = E), 
e.g. in a standard basis E is the span of (e1, . . . , ek) (resp. (e1, f1, . . . , ek, fk, ek+1, . . . en), (e1, . . . , en)). 

Example. For E ⊂ V Lagrangian with basis (e1, . . . , en), we can complete this to a symplectic basis 

(6) (e1, . . . , en, f1, . . . , fn) 

of V . 
1Definition 6. The symplectic volume form is n! Ω

∧n (where Ω is considered as an element of 
�2(V ∗). 

Note that, since Ω is nondegenerate, we can write Ω = i e
i ∧ f i, so Ω∧n = n!e1 ∧ f1 ∧ · · · ∧ en ∧ fn is a 

non-zero top form, and our volume form is well-defined. In fact, Ω∧n = 0 � ⇔ Ω is nondegenerate. 

3. Symplectic Manifolds 

Let M be a smooth manifold. 

Definition 7. A symplectic form on M is a 2-form ω (i.e. a skew-symmetric pairing ωp : TpM × TpM R 
for all p ∈ M) which is nondegenerate (i.e. 1 ωn is a volume form) and closed (i.e. dω = 0). 

→ 

n! 

Remark. M symplectic = it is even-dimensional and naturally oriented. Moreover, [ω] ∈ H2(M, R) plays an 
important role, especially if 

⇒
M is compact, as in this case 

� 
M 

ω
n

n 

! = vol(M) > 0 = ⇒ [ω] = 0. �

Example. For R2n, ω0 = dxi ∧ dyi is the standard symplectic structure: for Cn , we write this as ω = 
i dzj ∧ dzj instead. Furthermore, for an orientable surface Σ, any area form is a symplectic form. 2 

Problem. For which values of n does S2n (resp. T 2n) have a symplectic structure? 

Definition 8. A symplectomorphism is a diffeomorphism φ : (M, ω) (M �, ω�) s.t. φ∗ω� = ω.→ 

We denote the group of symplectomorphisms of M by Symp(M, ω). 

Example. For S2 ⊂ R3, Symp(S2) is the group of area and orientation preserving diffeomorphisms, which is 
much larger than the group of isometries. 

Theorem 2 (Darboux). Every symplectic manifold is locally symplectomorphic to (R2n, ω), i.e. it has local 
coordinates in which ω = dxi ∧ dyi. 


