SYMPLECTIC GEOMETRY, LECTURE 1

Prof. Denis Auroux

1. DIFFERENTIAL FORMS

Given M a smooth manifold, one has two natural bundles: the tangent bundle TM = {v = Zvia%i} and
the cotangent bundle T*M = {a = a;dx;}. Under C* maps, tangent vectors pushforward:

(1) f*M—->N = f*(U) = df(’l)) € Tf(U)N
Similarly, differential forms pull back: f*(a) = aodf € T, M.

Definition 1. A differential p-form is a section of A" T*M. We denote the set of such sections as

(2) QP(M) = QP(M,R) = C>°( ;\ T*M)

Recall that, for E a vector space, A" E = @" E/{e; Aej +e; Ae; = 0}. Furthermore, A" E has a basis
ey, N+ Aeg,, i1 < -+ <ip. In coordinates, a p-form is locally

(3) o = Z Qg . ,ipdxh VARERIAN dl’ip
11 < <ip
where the a;, ... ;, are C°° functions. (Under coordinate changes, z; = fi(y1,...,yn), one replaces dx; by

dfi = 3, giedy;.)

Definition 2. The exterior differential is the map d : QP — QPT! which maps:
e For f a function, df =3 %dﬂ?i-

d is obtained by extending R-linearly to all of QP

Note that d satisfies d(fa) = fda + df A a. The exterior derivative has the following properties:
e dlaAp)=(da) A B+ (—1)%8 “q A dB. In coordinates,

(4) d((fdxs, N--- Ndxg,) A (gdaj, A--- Ndwy)) = (fdg + gdf) Ndag, A -+ ANdag, Ndxj, A--- ANdxy,

e d?> = 0. For any function f,

(5) dzfzzﬁdxi/\dszo
- O0x;0z;
because terms with switched i, j cancel.
These two properties give us the structure of a differential graded algebra on Q*(M) = P, QP (M).
o Vo € C®(M,N),a € QP(N), ¢*(da) = d(¢*a).
Other operations:

e For v € C®°(TM) a vector field, a € QP(M) a form, we have the interior product i,a = a(v,---) €
Qr—1(M).

e For X € C>®(T'M) a vector field, f € C*°(M), we have the Lie derivative X - f = Lx f = ixdf = df(X).
If X generates diffecomorphisms ¢! on M with ¢*(z) = z and 4 ¢(z) = X (¢!(z)), then

() (@)1 = S(fod) =" (X 1)
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We can extend this construction to forms: given o € QP (M), X € C*>°(T'M) a vector field, Lxa € O is
defined s.t.
@ L6 0) = 67 (Lxa)
Note that the Lie derivative satisfies
(8) Lx(anp)=LxaANB+aALxf
and Lx(da) = d(Lxa).
Combining these two properties, we find that:
Proposition 1. Lxa =dixa+ixda.
Proof. By induction: base case is trivial, so assume statement for p-forms. Locally, a (p+ 1) form is the sum of
fda for f e C®(M),a € QP. Thus,
Lx(fda) = (Lxf)da+ fdLxa
(9) = (ixdf)da+ f(ddixa + dixda)
= (ixdf)da+ fdixda
Now,
dix(fda) +ixd(fda) = d(fixda) +ix(df A da)
(10) =df Nixda+ fdixdo+ (ixdf)da —df Nixdo
= (ixdf)da+ fdixda
giving us the desired equality. O

2. DE RHAM COHOMOLOGY
Definition 3. We say that a € QP is closed if da = 0, exact if a = df for some 3. The de Rham cohomology
of M is the collection of groups
ker(d : QP — Qpt+l)
Im (d: Qr—1 — Qp)

(11) HP(M,R) =

Ezample. For M connected, df = 0 < f is constant, so H°(M,R) = R.
Proposition 2 (Poincaré Lemma). HP?(R™) =0 Vp > 1.

Proof. By induction on n. The case n =1 is obvious, as f = [ade = df = a. For general n, write
(12) o= Z gy iy dTiy Ao N dxy,
1<iy < <ip<n
on R” and assume « is closed. Let
(13) /6) = Z ﬂjl"'jp—ldle ARRRNA dxjrz—1
2<j1<-<jp—1<n

aﬁh"'j
1 Ipml o i L = S ; — 4 ; r_
where —5= = ojyej,, (e Bj.j, = [@ijy..j,_,dx1). Then 52 dp = Lo by construction. Let o' =

a—dfB. Theno' =375, .. <, &, ..;,dTiy A+ Adz;, with no dzy by construction and do’ = dov—d(d3) = 0,
showing that o’ is pulled back from R™~! by (x1,...,2,) ¥ (z2,...,2,). Writing o/ = 7*n,n € Q(R"™1), we
have that dn = 0 and 1 = dv by our inductive hypothesis. Thus, o« = o/ + df = d(7*y + ) as desired. O
2.1. Variants of de Rham Cohomology.

e If M is noncompact, we can also consider the space of compactly supported differential forms QF(M,R)
and get the associated compactly supported de Rham cohomology H?(M,R).

e If U C M is a submanifold (e.g. an open subset), we can define relative differential forms QP (M, U;R) =
{a € QP(M,R)|a|y = 0} and obtain the relative de Rham cohomology HP (M, U;R).



SYMPLECTIC GEOMETRY, LECTURE 1 3

3. EXACT SEQUENCES OF COMPLEXES

IfM=UUV, UV C M open, we have an exact sequence on forms
(14) 0— QP(M)— QP(U)e0P(V) - QP(UNV) —0

where the first map sends a — (a|y, aly) and the second («, 5) — a|luny — Bluny. Both these maps commute
with d, and exactness is clear: for the surjectivity of the last map, use a partition of unity 1 = u + v, where
supp(u) C U,supp(v) C V, s0o v € QP(U NV) is the image of (v, —uy). This short exact sequence then gives a
long exact sequence (called the Mayer-Vietoris sequence)

(15) o HP(M) — HP(U) & HP(V) — HP (U NV) > HP(M) — -
The map § is obtained as follows:

(1) Choose a splitting o : QP(UNV) — QP(U) & QP(V).

(2) Given v € QP(UNV) closed, do(vy) lands in the image of i* : QPF1(M) — QPTHU) @ QPTH(V), and its

preimage gives the desired element of QP+1(M).

Similarly, for U C M, we get a sequence 0 — QP(M,U) — QP(M) — QP(U) — 0, with the maps given
by inclusion and restriction respectively, and thus a long exact sequence of relative cohomology. Using these
properties along with Poincaré duality and functoriality under diffeomorphisms, we get

Theorem 1. The de Rham and singular (simplicial) cohomologies are equivalent.

3.1. Operations on de Rham cohomology.

e Cup product: [a] U [B] = [a A F]. This is well defined: da = df = 0 = d(a A ) = 0, and
(a+dn))AB=aAB+dnAB).

e Pairing with homology: for ¥ C M a p-dimensional submanifold which is oriented and closed, we have
an element [¥] € H,(M) and thus a pairing ([o],[X]) = [ . More generally, given a p-cycle [X]
represented by Y n;C;, with C; p-dimensional submanifolds with 9, we get the same pairing extended
linearly. That this is well-defined is a consequence of Stokes’ theorem [, da = [, a.

e Poincaré duality: For M™ compact, [o] € H?(M),[8] € H" (M) — [,,a A3 = ([a]JU[B]) - [M] is a
nondegenerate linear pairing and gives an isomorphism H"~? = H,,. In the noncompact case, we have
[a] € HP(M),[] € H} (M) — [,, @ A3 giving H? P = H,,.



