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SYMPLECTIC GEOMETRY, LECTURE 1 

Prof. Denis Auroux 

1. Differential forms 

∂Given M a smooth manifold, one has two natural bundles: the tangent bundle TM = = vi ∂xi 
} and �	 {v 

the cotangent bundle T ∗M = {α = αidxi}. Under C∞ maps, tangent vectors pushforward: 

(1)	 f : M → N = ⇒ f∗(v) = df(v) ∈ Tf(v)N 

Similarly, differential forms pull back: f∗(α) = α ◦ df ∈ Tp 
∗M . 

Definition 1. A differential p-form is a section of p 
T ∗M . We denote the set of such sections as 

p

(2)	 Ωp(M) = Ωp(M, R) = C∞( T ∗M) 

Recall that, for E a vector space, ∗ 
E = ∗ 

E/{ei ∧ ej + ej ∧ ei = 0}. Furthermore, ∗ 
E has a basis 

ei1 ∧ · · · ∧ eip , i1 < · · · < ip. In coordinates, a � 
p-form is locally 

(3)	 α = αi1,··· ,ip dxi1 ∧ · · · ∧ dxip 

i1< <ip···

where the αi1, are C∞ functions.	 (Under coordinate changes, = fi(y1, . . . , yn), one replaces dxi by � ··· ,ip	 xi 
∂fidfi = j ∂yj 

dyj .) 

Definition 2. The exterior differential is the map d : Ωp Ωp+1 which maps: � ∂f	

→ 

•	 For f a function, df = ∂xi 
dxi. 

•	 d(fdxi1 ∧ · · · ∧ dxip ) = df ∧ dxi1 ∧ · · · ∧ dxip . 
d is obtained by extending R-linearly to all of Ωp. 

Note that d satisfies d(fα) = fdα + df ∧ α. The exterior derivative has the following properties: 
•	 d(α ∧ β) = (dα) ∧ β + (−1)deg αα ∧ dβ. In coordinates, 

(4) d((fdxi1 ∧ · · · ∧ dxip ) ∧ (gdxj1 ∧ · · · ∧ dxjq )) = (fdg + gdf) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq 

•	 d2 = 0. For any function f ,
 � ∂2f

(5)	 d2f = 

∂xj ∂xi 
dxi ∧ dxj = 0 

i,j 

because terms with switched i, j cancel. 
These two properties give us the structure of a differential graded algebra on Ω∗(M) = p Ω

p(M). 

• ∀φ ∈ C∞(M, N), α ∈ Ωp(N), φ∗(dα) = d(φ∗α). 
Other operations: 

•	 For v ∈ C∞(TM) a vector field, α ∈ Ωp(M) a form, we have the interior product ivα = α(v, · · · ) ∈
Ωp−1(M ). 

•	 For X ∈ C∞(TM) a vector field, f ∈ C∞(M), we have the Lie derivative X · f = LX f = iX df = df(X). 
dIf X generates diffeomorphisms φt on M with φ0(x) = x and dt φ

t(x) = X(φt(x)), then 

(6)	
dt

d 
((φt)∗f) = 

dt 
d 

(f ◦ φt) = φt∗(X · f) 

1 
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We can extend this construction to forms: given α ∈ Ωp(M), X ∈ C∞(TM ) a vector field, LX α ∈ Ωp is 
defined s.t. 

(7)	
dt

d 
((φt)∗α) = φ∗ 

t (LX α) 

Note that the Lie derivative satisfies 

(8)	 LX (α ∧ β) = LX α ∧ β + α ∧ LX β 

and LX (dα) = d(LX α). 
Combining these two properties, we find that: 

Proposition 1. LX α = diX α + iX dα. 

Proof. By induction: base case is trivial, so assume statement for p-forms. Locally, a (p + 1) form is the sum of 
fdα for f ∈ C∞(M), α ∈ Ωp. Thus, 

LX (fdα) = (LX f)dα + fdLX α 

(9)	 = (iX df)dα + f(ddiX α + diX dα) 

= (iX df)dα + fdiX dα 

Now, 
diX (fdα) + iX d(fdα) = d(fiX dα) + iX (df ∧ dα) 

(10)	 = df ∧ iX dα + fdiX dα + (iX df)dα − df ∧ iX dα 

= (iX df)dα + fdiX dα 

giving us the desired equality. � 

2. de Rham cohomology 

Definition 3. We say that α ∈ Ωp is closed if dα = 0, exact if α = dβ for some β. The de Rham cohomology 
of M is the collection of groups 

ker(d : Ωp Ωp+1)
(11)	 Hp(M, R) = 

→
Im (d : Ωp−1 Ωp)→ 

Example. For M connected, df = 0 f is constant, so H0(M, R) = R.⇔ 

Proposition 2 (Poincaré Lemma). Hp(Rn) = 0 ∀p ≥ 1. 

Proof. By induction on n. The case n = 1 is obvious, as f = αdx = df = α. For general n, write ⇒ 

(12)	 α = αi1···ip dxi1 ∧ · · · ∧ dxip 

1≤i1< <ip≤n···

on Rn and assume α is closed. Let 

(13)	 β = βj1···jp−1 dxj1 ∧ · · · ∧ dxjp−1 

2≤j1< <jp−1≤n···

where 
∂βj1··· p−1 (i.e. βj1··· = 

� 
dx1). Then i ∂ dβ = i ∂ α by construction. Let α� = ∂x1 

j = α1j1···jp−1 jp α1j1···jp−1 
∂x1 ∂x1 

α−dβ. Then α� = 2≤i1 < <ip≤n α
�

ip 
with no dx1 by construction and dα� = dα − d(dβ) = 0, ··· i1··· dxi1 ∧· · ·∧dxip 

πshowing that α� is pulled back from Rn−1 by (x1, . . . , xn) �→ (x2, . . . , xn). Writing α� = π∗η, η ∈ Ω(Rn−1), we 
have that dη = 0 and η = dγ by our inductive hypothesis. Thus, α = α� + dβ = d(π∗γ + β) as desired. � 

2.1. Variants of de Rham Cohomology. 
•	 If M is noncompact, we can also consider the space of compactly supported differential forms Ωp

c (M, R) 
and get the associated compactly supported de Rham cohomology Hc

p(M, R). 
•	 If U ⊂ M is a submanifold (e.g. an open subset), we can define relative differential forms Ωp(M, U ; R) = 
{α ∈ Ωp(M, R)|α|U = 0} and obtain the relative de Rham cohomology Hp(M, U ; R). 
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3. Exact sequences of complexes 

If M = U ∪ V , U, V ⊂ M open, we have an exact sequence on forms 

(14)	 0 → Ωp(M) → ΩP (U) ⊕ Ωp(V ) → Ωp(U ∩ V ) → 0 

where the first map sends α �→ (α|U , α|V ) and the second (α, β) → α|U∩V − β|U∩V . Both these maps commute 
with d, and exactness is clear: for the surjectivity of the last map, use a partition of unity 1 = u + v, where 
supp(u) ⊂ U, supp(v) ⊂ V , so γ ∈ Ωp(U ∩ V ) is the image of (vγ, −uγ). This short exact sequence then gives a 
long exact sequence (called the Mayer-Vietoris sequence) 

(15)	 Hp(M) Hp(U) ⊕ Hp(V ) Hp(U ∩ V ) δ 
Hp+1(M)· · · → →	 → → → · · · 

The map δ is obtained as follows: 
(1) Choose a splitting σ : Ωp(U ∩ V ) Ωp(U) ⊕ Ωp(V ). 
(2) Given γ ∈ Ωp(U ∩ V ) closed, dσ(γ

→
) lands in the image of i∗ : Ωp+1(M) Ωp+1(U) ⊕ Ωp+1(V ), and its 

preimage gives the desired element of Ωp+1(M). 
→ 

Similarly, for U ⊂ M , we get a sequence 0 → Ωp(M, U) → Ωp(M) → Ωp(U) → 0, with the maps given 
by inclusion and restriction respectively, and thus a long exact sequence of relative cohomology. Using these 
properties along with Poincaré duality and functoriality under diffeomorphisms, we get 

Theorem 1. The de Rham and singular (simplicial) cohomologies are equivalent. 

3.1. Operations on de Rham cohomology. 
•	 Cup product: [α] ∪ [β] = [α ∧ β]. This is well defined: dα = dβ = 0 = ⇒ d(α ∧ β) = 0, and 

(α + dη) ∧ β = α ∧ β + d(η ∧ β). 
Pairing with homology: for Σ ⊂ M a p-dimensional submanifold which is oriented and closed, we have 
an element [Σ] ∈ Hp(M) and thus a pairing �[α], [Σ]� = α. More generally, given a p-cycle [Σ] �	 Σ 
represented by niCi, with Ci p-dimensional submanifolds with ∂, we get the same pairing extended 
linearly. That this is well-defined is a consequence of Stokes’ theorem �Σ dα = 

∂Σ α. 
Poincaré duality: For Mn compact, [α] ∈ Hp(M), [β] ∈ Hn−p(M) �→ α ∧ β = ([α] ∪ [β]) [M ] is a •	

M · 
nondegenerate linear pairing and gives an isomorphism Hn−p ∼ In the noncompact case, we have � = Hp.

[α] ∈ Hp(M), [β] ∈ Hn−p α ∧ β giving Hn−p = Hp.
c M c(M) �→	 ∼


