SYMPLECTIC GEOMETRY, LECTURE 1

Prof. Denis Auroux

1. Differential forms

Given M a smooth manifold, one has two natural bundles: the tangent bundle $TM = \{v = \sum v_i \frac{\partial}{\partial x_i}\}$ and the cotangent bundle $T^*M = \{\alpha = \sum \alpha_i dx_i\}$. Under C^{∞} maps, tangent vectors pushforward:

$$(1) f: M \to N \implies f_*(v) = df(v) \in T_{f(v)}N$$

Similarly, differential forms pull back: $f^*(\alpha) = \alpha \circ df \in T_n^*M$.

Definition 1. A differential p-form is a section of $\bigwedge^p T^*M$. We denote the set of such sections as

(2)
$$\Omega^p(M) = \Omega^p(M, \mathbb{R}) = C^{\infty}(\bigwedge^p T^*M)$$

Recall that, for E a vector space, $\bigwedge^* E = \bigotimes^* E/\{e_i \wedge e_j + e_j \wedge e_i = 0\}$. Furthermore, $\bigwedge^* E$ has a basis $e_{i_1} \wedge \cdots \wedge e_{i_p}, i_1 < \cdots < i_p$. In coordinates, a p-form is locally

(3)
$$\alpha = \sum_{i_1 < \dots < i_p} \alpha_{i_1, \dots, i_p} dx_{i_1} \wedge \dots \wedge dx_{i_p}$$

where the α_{i_1,\dots,i_p} are C^{∞} functions. (Under coordinate changes, $x_i = f_i(y_1,\dots,y_n)$, one replaces dx_i by $df_i = \sum_j \frac{\partial f_i}{\partial y_j} dy_j.$

Definition 2. The exterior differential is the map $d: \Omega^p \to \Omega^{p+1}$ which maps:

- For f a function, $df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i$. $d(f dx_{i_1} \wedge \cdots \wedge dx_{i_p}) = df \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_p}$.

d is obtained by extending \mathbb{R} -linearly to all of Ω^p .

Note that d satisfies $d(f\alpha) = f d\alpha + df \wedge \alpha$. The exterior derivative has the following properties:

- $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^{\text{deg } \alpha} \alpha \wedge d\beta$. In coordinates,
- $d((fdx_{i_1} \wedge \cdots \wedge dx_{i_p}) \wedge (gdx_{j_1} \wedge \cdots \wedge dx_{j_q})) = (fdg + gdf) \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_p} \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_q})$ (4)
 - $d^2 = 0$. For any function f,

(5)
$$d^2 f = \sum_{i,j} \frac{\partial^2 f}{\partial x_j \partial x_i} dx_i \wedge dx_j = 0$$

because terms with switched i, j cancel.

These two properties give us the structure of a differential graded algebra on $\Omega^*(M) = \bigoplus_n \Omega^p(M)$.

• $\forall \phi \in C^{\infty}(M, N), \alpha \in \Omega^p(N), \phi^*(d\alpha) = d(\phi^*\alpha).$

Other operations:

- For $v \in C^{\infty}(TM)$ a vector field, $\alpha \in \Omega^p(M)$ a form, we have the interior product $i_v\alpha = \alpha(v, \cdots) \in$
- For $X \in C^{\infty}(TM)$ a vector field, $f \in C^{\infty}(M)$, we have the Lie derivative $X \cdot f = L_X f = i_X df = df(X)$. If X generates diffeomorphisms ϕ^t on M with $\phi^0(x) = x$ and $\frac{d}{dt}\phi^t(x) = X(\phi^t(x))$, then

(6)
$$\frac{d}{dt}((\phi^t)^*f) = \frac{d}{dt}(f \circ \phi^t) = \phi^{t*}(X \cdot f)$$

We can extend this construction to forms: given $\alpha \in \Omega^p(M)$, $X \in C^{\infty}(TM)$ a vector field, $L_X \alpha \in \Omega^p$ is defined s.t.

(7)
$$\frac{d}{dt}((\phi^t)^*\alpha) = \phi_t^*(L_X\alpha)$$

Note that the Lie derivative satisfies

(8)
$$L_X(\alpha \wedge \beta) = L_X \alpha \wedge \beta + \alpha \wedge L_X \beta$$

and $L_X(d\alpha) = d(L_X\alpha)$.

Combining these two properties, we find that:

Proposition 1. $L_X \alpha = di_X \alpha + i_X d\alpha$.

Proof. By induction: base case is trivial, so assume statement for p-forms. Locally, a (p+1) form is the sum of $fd\alpha$ for $f \in C^{\infty}(M)$, $\alpha \in \Omega^p$. Thus,

(9)
$$L_X(fd\alpha) = (L_X f) d\alpha + f dL_X \alpha$$
$$= (i_X df) d\alpha + f (ddi_X \alpha + di_X d\alpha)$$
$$= (i_X df) d\alpha + f di_X d\alpha$$

Now,

(10)
$$di_X(fd\alpha) + i_X d(fd\alpha) = d(fi_X d\alpha) + i_X (df \wedge d\alpha)$$
$$= df \wedge i_X d\alpha + f di_X d\alpha + (i_X df) d\alpha - df \wedge i_X d\alpha$$
$$= (i_X df) d\alpha + f di_X d\alpha$$

giving us the desired equality.

2. DE RHAM COHOMOLOGY

Definition 3. We say that $\alpha \in \Omega^p$ is closed if $d\alpha = 0$, exact if $\alpha = d\beta$ for some β . The de Rham cohomology of M is the collection of groups

(11)
$$H^{p}(M,\mathbb{R}) = \frac{\ker(d:\Omega^{p} \to \Omega^{p+1})}{\operatorname{Im} (d:\Omega^{p-1} \to \Omega^{p})}$$

Example. For M connected, $df = 0 \Leftrightarrow f$ is constant, so $H^0(M, \mathbb{R}) = \mathbb{R}$.

Proposition 2 (Poincaré Lemma). $H^p(\mathbb{R}^n) = 0 \ \forall p \geq 1$.

Proof. By induction on n. The case n=1 is obvious, as $f=\int \alpha dx \implies df=\alpha$. For general n, write

(12)
$$\alpha = \sum_{1 \le i_1 < \dots < i_p \le n} \alpha_{i_1 \dots i_p} dx_{i_1} \wedge \dots \wedge dx_{i_p}$$

on \mathbb{R}^n and assume α is closed. Let

(13)
$$\beta = \sum_{2 \le j_1 < \dots < j_{p-1} \le n} \beta_{j_1 \dots j_{p-1}} dx_{j_1} \wedge \dots \wedge dx_{j_{p-1}}$$

where $\frac{\partial \beta_{j_1\cdots j_{p-1}}}{\partial x_1} = \alpha_{1j_1\cdots j_{p-1}}$ (i.e. $\beta_{j_1\cdots j_p} = \int \alpha_{1j_1\cdots j_{p-1}} dx_1$). Then $i_{\frac{\partial}{\partial x_1}} d\beta = i_{\frac{\partial}{\partial x_1}} \alpha$ by construction. Let $\alpha' = \alpha - d\beta$. Then $\alpha' = \sum_{2 \leq i_1 < \cdots < i_p \leq n} \alpha'_{i_1\cdots i_p} dx_{i_1} \wedge \cdots \wedge dx_{i_p}$ with no dx_1 by construction and $d\alpha' = d\alpha - d(d\beta) = 0$, showing that α' is pulled back from \mathbb{R}^{n-1} by $(x_1, \ldots, x_n) \stackrel{\pi}{\mapsto} (x_2, \ldots, x_n)$. Writing $\alpha' = \pi^* \eta, \eta \in \Omega(\mathbb{R}^{n-1})$, we have that $d\eta = 0$ and $\eta = d\gamma$ by our inductive hypothesis. Thus, $\alpha = \alpha' + d\beta = d(\pi^* \gamma + \beta)$ as desired.

2.1. Variants of de Rham Cohomology.

- If M is noncompact, we can also consider the space of compactly supported differential forms $\Omega_c^p(M,\mathbb{R})$ and get the associated compactly supported de Rham cohomology $H_c^p(M,\mathbb{R})$.
- If $U \subset M$ is a submanifold (e.g. an open subset), we can define relative differential forms $\Omega^p(M,U;\mathbb{R}) = \{\alpha \in \Omega^p(M,\mathbb{R}) | \alpha|_U = 0\}$ and obtain the relative de Rham cohomology $H^p(M,U;\mathbb{R})$.

3. Exact sequences of complexes

If $M = U \cup V$, $U, V \subset M$ open, we have an exact sequence on forms

$$(14) 0 \to \Omega^p(M) \to \Omega^P(U) \oplus \Omega^p(V) \to \Omega^p(U \cap V) \to 0$$

where the first map sends $\alpha \mapsto (\alpha|_U, \alpha|_V)$ and the second $(\alpha, \beta) \to \alpha|_{U \cap V} - \beta|_{U \cap V}$. Both these maps commute with d, and exactness is clear: for the surjectivity of the last map, use a partition of unity 1 = u + v, where $\operatorname{supp}(u) \subset U$, $\operatorname{supp}(v) \subset V$, so $\gamma \in \Omega^p(U \cap V)$ is the image of $(v\gamma, -u\gamma)$. This short exact sequence then gives a long exact sequence (called the *Mayer-Vietoris* sequence)

$$(15) \qquad \cdots \to H^p(M) \to H^p(U) \oplus H^p(V) \to H^p(U \cap V) \xrightarrow{\delta} H^{p+1}(M) \to \cdots$$

The map δ is obtained as follows:

- (1) Choose a splitting $\sigma: \Omega^p(U \cap V) \to \Omega^p(U) \oplus \Omega^p(V)$.
- (2) Given $\gamma \in \Omega^p(U \cap V)$ closed, $d\sigma(\gamma)$ lands in the image of $i^* : \Omega^{p+1}(M) \to \Omega^{p+1}(U) \oplus \Omega^{p+1}(V)$, and its preimage gives the desired element of $\Omega^{p+1}(M)$.

Similarly, for $U \subset M$, we get a sequence $0 \to \Omega^p(M,U) \to \Omega^p(M) \to \Omega^p(U) \to 0$, with the maps given by inclusion and restriction respectively, and thus a long exact sequence of relative cohomology. Using these properties along with Poincaré duality and functoriality under diffeomorphisms, we get

Theorem 1. The de Rham and singular (simplicial) cohomologies are equivalent.

3.1. Operations on de Rham cohomology.

- Cup product: $[\alpha] \cup [\beta] = [\alpha \wedge \beta]$. This is well defined: $d\alpha = d\beta = 0 \implies d(\alpha \wedge \beta) = 0$, and $(\alpha + d\eta) \wedge \beta = \alpha \wedge \beta + d(\eta \wedge \beta)$.
- Pairing with homology: for $\Sigma \subset M$ a p-dimensional submanifold which is oriented and closed, we have an element $[\Sigma] \in H_p(M)$ and thus a pairing $\langle [\alpha], [\Sigma] \rangle = \int_{\Sigma} \alpha$. More generally, given a p-cycle $[\Sigma]$ represented by $\sum n_i C_i$, with C_i p-dimensional submanifolds with ∂ , we get the same pairing extended linearly. That this is well-defined is a consequence of Stokes' theorem $\int_{\Sigma} d\alpha = \int_{\partial \Sigma} \alpha$.
- Poincaré duality: For M^n compact, $[\alpha] \in H^p(M), [\beta] \in H^{n-p}(M) \mapsto \int_M \alpha \wedge \beta = ([\alpha] \cup [\beta]) \cdot [M]$ is a nondegenerate linear pairing and gives an isomorphism $H^{n-p} \cong H_p$. In the noncompact case, we have $[\alpha] \in H^p(M), [\beta] \in H^{n-p}_c(M) \mapsto \int_M \alpha \wedge \beta$ giving $H^{n-p}_c \cong H_p$.