
18.966 – Homework 2 – Solutions.


1. Equip R7 = Im O = {a + be, Re a = 0} with the cross-product x × y = Im(xy). By 
definition of the octonion product, if x, y ∩ Im O then Re(xy) = −�x, y⇔ (the usual Euclidean 
scalar product on R7). Indeed, 

Re((a + be)(a � + b� e)) = Re(aa � − b�b) = Re(−aa� − b�b) = −�a, a �⇔ − �b, b� ⇔. 

Therefore ∈x × y∈ = ∈Im(xy)∈ � ∈xy∈ = ∈x∈∈y∈, with equality iff x ∀ y. Let x ∩ S6 ⊥ R7 , 
and let y ∩ TxS

6 � x � ⊥ R7 . Then we define 

Jx(y) = x × y. 

Note that, since y ∀ x, we have Jx(y) = x × y = xy + �x, y⇔ = xy. 
We have to prove that Jx maps TxS

6 to itself, and that Jx 
2 = −Id. For this purpose, let 

x = a + be be a unit imaginary octonion (ā = −a) and let y = c + de be any octonion: then 

x(xy) = a(ac − db̄) − (ād̄ + c ̄b)b + (da + bc̄)ae + b(c̄ā − ̄bd)e 

= −|a|2 c − (a + ¯ db − c|b|2 − d|a|2 c(a + ā)e − |b|2dea) ¯ e + b¯

= −(|a|2 + |b|2)(c + de) = −∈x∈2 y = −y. 

If y ∩ TxS
6, i.e. y is imaginary and y ∀ x, then �x, xy⇔ = −Re(x(xy)) = Re(y) = 0, so Jx 

maps TxS
6 to itself, and Jx 

2 = −Id. 

2. a) Any vector in JL is of the form Ju, with u ∩ L. Given u, v ∩ L, we have 
�(Ju, Jv) = �(u, v) = 0 (since J is �-compatible and L is Lagrangian), and dim JL = 
dim L = 1 dim V , so JL is Lagrangian. Also, �u, v ∩ L, g(u, Jv) = �(u, J(Jv)) = 

2 
−�(u, v) = 0, so any vector in L is orthogonal to any vector in JL, i.e. JL ⊥ L� . Since 
dim JL = 1

2 dim V = dim L�, we conclude that JL = L� . 

b) Assume J is �-compatible, and let L be a Lagrangian subspace of (V, �). Choose a 
g-orthonormal basis (e1, . . . , en) of L, and let fi = Jei ∩ JL. Then �(ei, ej ) = 0 since L is 
Lagrangian, and �(fi, fj ) = 0 since JL is Lagrangian. Moreover, �(ei, fj ) = �(ei, Jej ) = 
g(ei, ej ) = λij . Hence we have a standard basis with fi = Jei. 

Conversely, if there exists a standard basis with fi = Jei, then �(ei, Jej ) = �(fi, Jfj ) = 
λij , and �(ei, Jfj ) = �(fi, Jej ) = 0, so the bilinear form g = �(·, J ·) is symmetric and defi­
nite positive (and (e1, . . . , en, f1, . . . , fn) is an orthonormal basis). Hence J is �-compatible. 

3. a) Recall that, for any vector u ∩ TxM , ◦s(u) is the vertical component of dsx(u) ∩ 
Ts(x)L (while the horizontal component of dsx(u) is the horizontal lift of u). Therefore the 
assumption that ◦s is surjective at every point of Z = s −1(0) means that the graph �s of s 
is transverse to the zero section �0 ⊥ L, and hence that Z = �s ≤ �0 is smooth. Moreover, 
at every point x of Z we have TxZ = Tx�s ≤ Tx�0, i.e. the tangent space to Z is the set 
of all vectors v ∩ TxM such that dsx(v) is tangent to the zero section, i.e. horizontal, i.e. 
◦s(v) = 0. Hence TZ = Ker ◦s. 



b) Let x ∩ Z, and assume that |αsx| > | ̄ |.αsx We want to show that the restriction of 
TxZ = Ker ◦sx is a symplectic subspace of (TxM, �x). This is a linear algebra question 
involving the linear map ◦sx : TxM � Lx. 

Use a unit length element in Lx to identify the fiber Lx (a rank 1 complex vector space 
with a Hermitian norm) with C equipped with the standard norm | · |. Then ◦sx becomes 
a linear map TxM � C. 

Method 1: Let g : TxM × TxM � R be the metric induced by � and J , and consider 
the linear form αsx : TxM � C. There exists a unique vector u ∩ TxM such that Re αsx = 
g(u, ·); because αsx ⊂ J = iαsx, we have Im αsx = g(−Ju, ·). Similarly, there exists a unique 
v ∩ TxM such that Re ¯ = g(v, αsx ·). The assumption |αsx αsx| isαsx ·), and Im ¯ = g(Jv, | > | ̄
equivalent to the property g(u, u) > g(v, v). 

Since ◦sx = αsx αsx, we have Re ◦sx = g(u + v, ·) = �(−Ju − Jv, ·), and Im ◦sx =+ ¯

g(−Ju + Jv, ·) = �(−u + v, ·). Hence, E = TxZ = Ker ◦sx is the set of all tangent vectors 
that are symplectically orthogonal to −Ju−Jv and −u+v, i.e. E� = span(−Ju−Jv, −u+v). 
Recall that E ⊥ (TxM, �) is a symplectic subspace ⊕ TxM = E → E� ⊕ E� is a symplectic 
subspace. So we just need to check that the restriction of � to E� is non-degenerate. Since 

�(−u + v, −Ju − Jv) = �(u, Ju) − �(v, Ju) + �(u, Jv) − �(v, Jv) 

= g(u, u) − g(v, u) + g(u, v) − g(v, v) = g(u, u) − g(v, v) > 0, 

we conclude that Z is a symplectic submanifold of (M, �). 

Method 2: use the result of Problem 2 to identify (TxM, �, J, g) with (Cn, �0, i, | · |). 
Then αsx : Cn � C can be written as αsx(u1, . . . , un) = 

� 
�j uj for some constants �i ∩ C, 

and similarly αs¯ x(u1, . . . , un) = 
� 

ωj ūj . In order to prove that TxZ is a symplectic subspace, 
we consider a non-zero vector u = (u1, . . . , un) ∩ TxZ, and need to show that there exists 
v ∩ TxZ such that �(u, v) = 0. We look for v = (v1, . . . , vn) of the form vj = iuj + �¯ �ωj ,� �j − ̄
where � ∩ C. The condition 

◦s(v) = 
�

(iuj �j +�¯ �ωj�j )+(−i¯ ��j ωj −�ω̄j ωj ) = ◦s(Ju)+�(|�|2 −|ω|2) = 0 �j �j −¯ uj ωj +¯

◦s(Ju) 
| > | ̄gives � = − (note that |�|2 − |ω|2 = 0 since � |�| = |αsx αsx| = |ω|).

|�|2 − |ω|2) �

On the other hand, since ◦s(u) = uj �j + ūj ωj = 0, we have


�(u, ��̄ − ¯
� 

ūj (�¯ �ωj )�ω) = Im( �j − ¯

= Im(� 
� 

ūj �̄j ) − Im(�̄
� 

ūj ωj ) 

= Im(� 
� 

ūj �̄j ) + Im(�̄
� 

uj �j ) = 0. 

Hence �(u, v) = �(u, Ju) = |u|2 �= 0. 


