18.966 — Homework 1 — Solutions.

1. Let E be a Lagrangian subspace of a symplectic vector space (V,(2), and let ey, ... e,
be a basis of E. We proceed by induction, assuming we have constructed fi,..., fx_1 € V
such that the family (eq,...,en, f1,..., fk—1) is free and Q(e;, f;) =1, Q(e;, f;) = 0 for i # j,
and Q(f;, f;) = 0.

Because (e1,...,€n, f1,.-., fr_1) is free, there exists a (non-unique) linear form 7 € V*
such that 7(e;) = 0 for ¢ # k, 7(f;) = 0 for i < k, and 7(ex) = 1. Using the fact that € is
non-degenerate (induces an isomorphism between V' and V*), there exists fr € V such that
Q(', fk) =T.

Let us check that the family (eq,...,en, fi,..., fx) is free. Indeed, if v = >0 Ne; +
Zle wifi = 0, then Q(e;,v) = p; =0 for all 1 < i <k, and v = ) N\je; = 0; since the (e;)
form a basis of E, we also have \; = 0 for all i. Moreover, Q(e;, fr) and Q(f;, fx) are as
prescribed.

Therefore, by induction we can construct fi,..., f, such that (e1,...,e,, fi,..., fa) is a
basis of V' (it’s a free family and dim V' = 2n) and the expression of €2 in this basis is the
standard one.

2. 52 is an orientable surface and hence carries a symplectic structure (its standard area
form, for example); however, for n > 2, the compact manifold S?" has H?(S?",R) = 0, so it
cannot be symplectic (for any closed 2-form, [g,, w™ = [w]“" - [S*"] = 0).

The torus 72" always carries a symplectic structure, induced from the standard sym-
plectic structure of R?" (which is preserved by translations). (On T?" there are coordinates
Ty s Ty Y1y - Yn € R/Z = St the symplectic form can be written as w = Y dz; A dy;.)
Alternatively, 72" is the product of n copies of T? which is an orientable surface. (Recall a
product of symplectic manifolds is symplectic.)
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Observing that v, and v are mutually homologous (the restriction of T to [0,¢] x S*
provides a bounding 2-chain), the r.h.s. is equal to fol([ixtw], [v))dt = (Flux(p:), [7])-

b) Assume ¢ : (z,§) — (z, + 1) is generated by a time-dependent Hamiltonian vector
field X, (i.e., ¢ = p1, and ix,w = dH, for some Hamiltonian H; : M — R). Then Flux(p;) =0
by definition ([ix,w] = 0 for all ¢).

Recall that w = doa, where a@ = £dx, and consider the loop v : ST — T*S1 defined by
v(x) = (z,0), and its image 7, = ¢(7y) given by v1(x) = (z,1). recall that by (1) and Stokes’
theorem we have
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which implies that f% a = f% «, in contradiction with the direct calculation ( f% Edr =0
and fm ¢ dx = 2m). Therefore ¢ is not Hamiltonian.

4. a) w; = ¢}w is a symplectic form, and < “wy is an exact 1-form since it equals ¢} (Ly,w) =
d(¢; (iy,w)) where Y; is the vector field generatlng ¢;. Hence following Moser’s argument we
can find a 1-form oy such that doy = —%w; (in this case we can e. g take oy = — ¢ (iy,w))
and a vector field X; such that a; = ix,w; (for example X; = —(¢; 1).(Y7)).

Let vy = ¢, o p;, where p; is the isotopy generated by the vector fields X;. Then ¢jw =

pi($w) = piwr, and
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so ¥ is a family of symplectomorphisms. Moreover, if we assume that the vector field
X; is tangent to X for all ¢, then by integration of the differential equation po(p) = p,
< pi(p) = Xi(p(p)) we obtain that p, maps %o onto itself. Therefore, 1;(X0) = ¢¢(Z9) = ;.
(Note that the flow is well-defined because M and ¥, are compact.)

b) Consider a point p € Xy because the symplectic orthogonal to Ny'¥ is exactly T},%,
the vector field X is tangent to Xy at p (i.e. X, € T,%) if and only if w,(X,,v) = 0
Vo € NyXo, ie. if and only if 7xw vanishes on Ny%.

c¢) Let X be a neighborhood of the zero section in N“¥y = {(p,v), p € Xo, v € Ny¥o}.
Using e.g. the exponential map for an arbitrary metric we can construct a smooth map
0 : X — M such that Vp € Xy, 0(p,0) = p, and Yo € NXg, dfl,0)(0,v) = v. Consider a
point (p,0) of the zero section in X: we have T, n X = T,% @ N3, and by construction
dp,0)0(u,v) = u+v for all u € T,Xy and v € Ny%,. However, T,% is a symplectic subspace
of the vector space (T,M,w), so T,M = T,X, ® N;%o, and the differential of 6 at p is an
isomorphism. Therefore @ is a local diffeomorphism, i.e. it induces a diffeomorphism over a
neighborhood U of the zero section.

At any point p € ¥, the restriction to N¥ of the 1-form a € QM) defines a linear
form oy, : N¥¥o — R. Let h : N“¥ — R be the function defined by h(p,v) = a,(v). Finally,
let x : N¥3y — [0, 1] be a smooth cut-off function equal to 1 over a neighborhood of the zero
section and with support contained in U, and let h(p,v) = x(p,v)h(p,v). By construction,
d(p,0)h(0,v) = dp,0)h(0,v) = a(v).

Let f: M — R be the unique smooth function with support contained in #(U) and such
that f(A(z)) = h(x) for all # € U. Then by construction, for every p € ¥y and v € Ny,
dpf(v) = dipoyh o (dpy0) "1 (v) = dipoyh(0,v) = a,(v), ie. the restriction of df to N¥%y is
equal to that of a.

d) Let oy be a smooth family of 1-forms such that doy = —d—wt (for example those
constructed in (a)), and let f; be the functions constructed in (c¢). Then & = «; — df; also
satisfies the property that da; = ;twt, and additionally the restriction of a; to NV, 2120 (the
orthogonal to T,X, with respect to w;) vanishes at every point of ¥. Therefore the vector
field X; such that ix,w; = & is tangent to ¥ at every point of 3y (by the result of (b)), and

Lx,w; = —%wt. By part (a) this completes the proof.



