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CHAPTER 2 

Local geometry of hypersurfaces 
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Lecture 11


Background from linear algebra: A symmetric bilinear form on Rn is a 
map I : Rn × Rn → R of the form I(x, y) = ij xiaij yj , where aij = aji. 
Equivalently, I(x, y) = �x, Ay�, where A is a symmetric matrix. We say that 
I is an inner product if I(x, x) > 0 for all nonzero x, or equivalently if A is 
positive definite. 

Suppose from now on that I is an inner product. A basis (e1, . . . , en) is 
called orthogonal with respect to I if 

I(ei, ei) = 1, I(ei, ej ) = 0 for i =� j. 

Such bases always exist. In particular, by passing from the standard basis 
to the basis given by such vectors, one reduces standard about I to ones 
about the standard inner product �·, ·�. A linear map L : Rn → Rn is 
called selfadjoint with respect to I if I(x, Ly) is a symmetric bilinear form. 
Equivalently, this is the case iff AL is symmetric, which means that 

AL = LtrA. 

Such a matrix L always has a basis of eigenvectors, which is an orthogonal 
basis with respect to I. 

Background from multivariable calculus: the derivative or Jacobian of a 
smooth map f : Rm Rn at a point x is a linear map Dfx : Rm Rn . In→ →
terms of partial derivatives, 

Dfx(X) = ( j ∂xj f1 · Xj , j ∂xj f2 · Xj , . . . ). 

The chain rule is D(f g)x = Dfg(x) Dgx, where the right hand side is ◦ · 
matrix multiplication. The second derivative is a symmetric bilinear map 
D2fx : Rm × Rm → Rn (for n = 1, this is a symmetric bilinear form, called 
the Hessian of the function f). Again explicitly, 

D2fx(X, Y ) = ( i,j ∂x
2 

ixj 
f1 · XiYj , i,j ∂x

2 
ixj 
f2 · XiYj , . . . ). 
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Lecture 12 

Definition 12.1. A hypersurface patch is a smooth map f : U Rn+1 ,→
where U ⊂ Rn is an open subset, such that the derivatives ∂x1 f, . . . , ∂xn f ∈
Rn+1 are linearly independent at each point x. Equivalently, the Jacobian 
Dfx : Rn Rn+1 is injective (one-to-one). → 

Definition 12.2. Let f be a hypersurface patch. There is a unique ν : U 
Rn+1 

→
such that ν(x) is of length one, is orthogonal to ∂x1 f, . . . , ∂xn f , and 

satisfies det(∂x1 f, . . . , ∂xn f, ν(x)) > 0. It is automatically smooth. We call 
ν(x) the Gauss normal vector of f at the point x. 

Like in Frenet theory, we have an explicit formula. First, define N by 
i-th unit vector 

Ni = det(∂x1 f, . . . , ∂xn f, (0, . . . , 1, . . . , 0) ). 

Then ν = N/�N�. For a curve in R2, this simplifies to ν = Jf �/�f ��. For a 
surface in R3 , N = ∂x1 f × ∂x2 f , hence 

ν = ∂x1 f × ∂x2 f/�∂x1 f × ∂x2 f�. 

Definition 12.3. Define Gij (x) = �∂xi f, ∂xj f�. Equivalently, the matrix 
with entries Gij (x) is Gx = Dfx

tr Dfx. The associated inner product, · 
Ix(X, Y ) = �X, GxY � = �Dfx(X), Dfx(Y )�, is called the first fundamental 
form. 

Definition 12.4. Define Hij (x) = −�∂xi ν, ∂xj f� = �∂xi ∂xj f, ν(x)�. Equiva­
lently, the matrix with entries Hij (x) is Hx = −Dνtr Dfx. The associated x · 
symmetric bilinear form, IIx(X, Y ) = �X, HxY � = −�Dνx(X), Dfx(Y )� = 
�ν(x), D2fx(X, Y )�, is called the second fundamental form. 

G−1 G−1)trDefinition 12.5. Define a matrix Lx by Lx = x Hx = (Hx x . We 
call this the shape operator. Equivalently, this is characterized by the prop­
erty that 

IIx(X, Y ) = Ix(LxX, Y ). 

Lemma 12.6. Dν = −Df L (matrix multiplication). More explicitly, each · 
partial derivative ∂xi ν lies in the linear span of {∂x1 f, . . . , ∂xn f}, and the 
shape operator allows us to express it as a linear combination of these vec­
tors: � 

∂xi ν = − Lji(x)∂xj f. 
j 

Example 12.7. Suppose that f(x) = (x, h(x)), where h is a smooth function 
of n variables. Let p ∈ U be a point where h and Dh both vanish. At that 
point, G = 1 is the identity matrix, and H (as well as L) is the Hessian 
D2h. 
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Here’s a summary. Let f : U Rn+1 be a hypersurface patch, and ν : U→ →
Rn+1 its Gauss map. We then get: 

coefficients


Gij = �∂xi f, ∂xj f�
Hij = −�∂xi ν, ∂xj f� 

= �ν, ∂x
2 

ixj 
f� 

Lij 

matrix


G = Df tr Df · 
H = −Dνtr Df · 

L = G−1H = (HG−1)tr 

bilinear form


I(X, Y ) = �Df(X), Df(Y )�
II(X, Y ) = −�Dν(X), Df(Y )� 

= �ν, D2f(X, Y )� 

Let U, Ũ be open subsets of Rn, and φ : Ũ U a smooth map such that →
det(Dφ) > 0 everywhere. If f : U Rn+1 is a regular hypersurface, then 

φ : ˜
→

so is f̃ = f U Rn+1, which we call a partial reparametrization of f .◦ → 

Proposition 13.1. The coordinate changes for the main associated data 
are 

ν̃(x) = ν(φ(x)), 

G̃(x) = Dφ(x)tr G(φ(x)) Dφ(x),· · 

H̃(x) = Dφ(x)tr H(φ(x)) Dφ(x),· · 

L̃(x) = Dφ(x)−1 L(φ(x)) Dφ(x).· · 

All the structures above are obtained by differentiating f . It is interesting to 
ask to what extent they can be integrated back to determine the hypersurface 
itself. 

Example 13.2. Let f : U Rn+1 be a hypersurface patch such that L is→
1/R times the identity matrix, for some R =� 0. Then f + Rν is constant, 
and therefore, the image f(U) is contained in a radius |R| sphere in Rn+1 . 

Rn+1Proposition 13.3. Let f, f̃ : U be two hypersurface patches, →
defined on the same connected set U ⊂ Rn . Suppose that their first and 
second fundamental forms coincide. Then f̃(x) = Af(x) + c, where A is an 
orthogonal matrix with determinant +1, and c some constant. 
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By definition Lx is selfadjoint with respect to the inner product Ix. Hence, 
it has a basis of eigenvectors which are orthonormal with respect to Ix. Note 
that X is an eigenvector of Lx iff HxX = λGxX. Hence, the eigenvalues λ 
are the solutions of det(G − λH) = 0. 

Definition 14.1. The eigenvalues (λ1, . . . , λn) of Lx are called the principal 
curvatures of the hypersurface patch f at x. The corresponding eigenvectors 
(X1, . . . , Xn) are called the principal curvature directions. 

If f̃ = f(φ) is a partial reparametrization of f , then the principal curvatures 
of f̃  at x are equal to the principal curvatures of f at φ(x). 

Example 14.2. Suppose that f is such that f1 achieves its maximum at the 
point p. Then ν(p) = (±1, 0, . . . , 0). In the + case, all principal curvatures 
at p are ≤ 0. In the − case, all principal curvatures at p are ≥ 0. 

Example 14.3. Suppose that f is such that �f� achieves its maximum at 
the point p, where �f(p)� = R. Then ν(p) = ±f(p)/�f(p)�. In the + case, 
all principal curvatures at p are ≤ −1/R < 0. In the − case, all principal 
curvatures at p are ≥ 1/R > 0. 

Definition 14.4. Let λ1, . . . , λn be the principal curvatures of f at x. The 
mean curvature is 

κmean = λ1 + + λn = trace(L).· · · 
The Gauss curvature is 

κgauss λn = det(L) = det(H)/ det(G).= λ1 · · · 
The scalar curvature is 

κscalar = λiλj = 2
1 (trace(L)2 − trace(L2)). 

i<j 

Lemma 14.5. The Gauss curvature is 
det(∂x1 ν, . . . , ∂xn ν, ν)κgauss = (−1)n √

det G
. 
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Lecture 15


Example 15.1. Let c be a Frenet curve in R3, parametrized with unit speed. 
Consider the surface patch f(x1, x2) = c(x1)+x2c

�(x1), where x2 > 0. Then 
κgauss = 0 and 

1 τ (x1)
κmean = −

x2 
· 
κ(x1)

, 

where τ and κ are the torsion and curvature of c as a Frenet curve. 

Example 15.2. Let c : I R2 be a curve, parametrized with unit speed, →
whose first component c1 is always positive. The associated surface of rota­
tion is f : I × R → R3 , 

f(x1, x2) = (c1(x1) cos x2, c1(x1) sin x2, c2(x1)). 

The first and second fundamental forms of f are given by 

G = 1 
2 , H = 

−c��1c�2 + c�1c2
��

; 
c1 c1c

�
2 

In particular, κgauss = −c1��/c1. 

This can be used to construct surfaces with constant Gauss curvature, by 
solving the corresponding equation. For instance, the pseudo-sphere with 
Gauss curvature −1 is obtained by setting � t � 

c1(t) = e t , c2(t) = 1 − e2τ dτ, 
0 

where t ∈ (−∞, 0). 
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Lecture 16 

Definition 16.1. Write 
∂2f � ∂f 

= Γij
k + Hij ν. 

∂xi∂xj ∂xk
k 

The functions Γk (x) are called Christoffel symbols. ij 

From the definition, it follows that � ∂2f ∂f 
Γl ,ij Gkl = �

∂xi∂xj ∂xk 
�. 

l 

Theorem 16.2. Let gij be the coefficients of the inverse matrix G−1 . Then 

Γl = 1
2 g kl ∂xj Gij + ∂xi .ij Gik − ∂xk Gjk 

k 

The expression above shows that the Christoffel symbols only depend on the 
first fundamental form. By taking the definition of Γl and applying ∂/∂xk,ij 
we get � � ∂3f ∂f � � 

∂xi∂xj∂xk 
, 
∂xl 

Gls = ∂kΓij
s + Γij

t Γkt 
s − Hij Lsk. 

l t 

Using cancellation properties on the left hand side, one sees that 

Theorem 16.3. The Gauss equation holds: 

Hij Lsk − HikLsj = ∂kΓs Γt Γs Γs 
ij − ∂jΓs

ik + ij kt − Γt
ik jt. 

t 

The expression on the right hand side of the Gauss equation is usually 
written as Rs Denote by Γi the matrices whose entries are the Christoffel ikj . 
symbols, more precisely 

(Γj )si = Γs 
ij . 

Similarly, write Rij for the matrices whose entries are the Riemann curva­
tures, more precisely 

(Rkj )si = Rikj 
s . 

Then, the definition of the Rs can be rewritten in matrix notation as ikj 

Rkj = ∂kΓj − ∂j Γk + ΓkΓj − Γj Γk. 
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Lecture 17 

Since H = GL, we can also write the Gauss equation in one of the two 
following forms: � 

Hij Hsk − HikHsj = GsuR
u 
ikj , 

u 

= GiuRsLij Lsk − LikLsj ukj . 
u 

For a surface in R3, one sets (i, j, k, s) = (1, 1, 2, 2) in the first equation to 
get det(H), hence: 

Corollary 17.1. (Theorema egregium for surfaces) The Gauss curvature 
of a surface patch is given in terms of the first fundamental form by 

Ru 
u G2u 121κgauss = 
det(G) 

. 

Example 17.2 (Isothermal or conformal coordinates). Suppose that the 
first fundamental form satisfies 

G(x1, x2) = e h(x1,x2) 1 0 
.0 1 

Then κgauss = −
2e
1 
h Δh, where Δ is the Laplace operator. There is a (hard) 

theorem which says that for an arbitrary surface patch and any given point, 
one can find a local reparametrization which brings the metric into this form. 

Example 17.3 (Parallel geodesic coordinates). Suppose that the first fun­
damental form satisfies 

1 0 
G(x1, x2) = 0 h2(x1, x2) 

. 

∂2 h
Then κgauss = − x

h 
1 . There is a (not so hard)which says that for an arbi­

trary surface patch and any given point, one can find a local reparametriza­
tion which brings the metric into this form. 
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We now introduce a generalization of our usual formalism, where the partial 
derivatives ∂xi f are replaced by some more flexible auxiliary choice of basis 
at any point. 

Definition 18.1. Let f : U Rn+1 be a hypersurface patch. A moving→
basis for f is a collection (X1, . . . , Xn) of vector-valued functions Xi : U →
Rn which are linearly independent at each point. If the Xi are orthonormal 
with respect to the first fundamental form, we call (X1, . . . , Xn) a moving 
frame. 

Let X be the matrix whose columns are (X1, . . . , Xn), and define the con­
nection matrices and their curvature matrices to be, respectively, 

Aj = X−1(∂xj X) + X−1ΓjX, 

Fkj = ∂kAj − ∂j Ak + AkAj − Aj Ak. 

Lemma 18.2. For any moving basis, Fkj = X−1Rkj X. 

Lemma 18.3. If the moving basis is a frame, the Aj and Fkj are skew-
symmetric matrices. 

Let’s specialize to the case of surfaces, n = 2, and take X to be a moving 
frame. Then, F12 is necessarily a multiple of J . From the Gauss equation, 
we have 

κgauss = det(L) = (R21G
−1)12 

= (XF21X
−1G−1)12 = (XF21X

tr)12 

= (F21)12 det(X) = (F21)12 det(G)−1/2 . 

This gives rise to a curvature expression in curl form: 

Proposition 18.4. If αi = (Ai)12, then 

κgauss det(G) = (F21)12 = ∂2α1 − ∂1α2. 

Corollary 18.5 (Gauss-Bonnet for tori). Let f : R2 R3 be a doubly-
periodic surface patch, which means that f(x1 + T1, x

→ 
2) = f(x1, x2) = 

f(x1, x2 + T2) for some T1, T2 > 0. Then 

κtot def = κgauss det(G) dx1dx2 = 0.gauss

[0,T1]×[0,T2]


From this and Example 14.3, we get: 

Corollary 18.6. If f is a doubly-periodic surface patch, then the Gauss 
curvature must be > 0 at some point, and < 0 at some other point. 
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Before continuing, we need more linear algebra preliminaries: write Λ2(Rn) 
for the space of skewsymmetric matrices of size n. This is a linear subspace 
of Rn2 

of dimension n(n − 1)/2. Given v, w ∈ Rn, we denote by v ∧ w the 
skewsymmetric matrix with entries 

(v ∧ w)ij = 1 (viwj − wivj ).2 

This satisfies the rules 
w ∧ v = −v ∧ w, 

w ∧ (u + v) = w ∧ u + w ∧ v. 

Lemma 19.1. If (vi)1≤i≤n is any basis of Rn, then (vi ∧ vj )1≤i<j≤n is a basis 
of the space of antisymmetric matrices. 

Given any linear map L : Rn Rn, there is an associated map → 

Λ2L : Λ2Rn −→ Λ2Rn , (Λ2L)(S) = LSLtr . 

This satisfies (and is characterized by) 

Λ2L(v ∧ w) = Lv ∧ Lw. 

Example 19.2. If n = 2, then Λ2R2 is one-dimensional, and Λ2L is just 
multiplication with det(L). 

Lemma 19.3. We have 
trace(Λ2L) = 1 (trace(L)2 − trace(L2)),2 

det(Λ2L) = det(L)n−1 . 

Lemma 19.4. Suppose that L, L̃ : Rn Rn are two linear maps, with →
rank(L) ≥ 3. Then, if Λ2L = Λ2L̃, it also follows that L = ±L̃. 

This is easiest to see if L is a diagonal matrix with entries (1, . . . , 1, 0, . . . , 0), 
and the general case follows from that. 
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An expression is called intrinsic if it depends only on the first fundamental 
form and its derivatives. For instance, G is intrinsic, but H is not intrinsic. 
Less obviously, the Christoffel symbols are intrinsic, and so are the Rs . The ikj 
last-mentioned observation deserves to be formulated in a more conceptual 
way. 

Let Λ2L : Λ2Rn Λ2Rn be the second exterior product of the shape oper­→
ator. We call this the Riemann curvature operator, and denote it by R. By 
definition 

R(ej ∧ ek) = Lej ∧ Lek = Lij Lskei ∧ es =

is
� � � � �

iuRs(Lij Lsk − Lsj Lik)ei ∧ es = g ukj ei ∧ es. 
i<s i<s u 

Under reparametrization f̃ = f φ, the Riemann curvature operators satisfy ◦
R̃(x) = (Λ2Dψ(x))−1 · R(ψ(x)) · (Λ2Dψ(x)). 

Theorem 20.1. (Generalized theorema egregium) R is intrinsic. 

Corollary 20.2. The unordered collection of n(n − 1)/2 numbers λiλj is 
intrinsic. 

Corollary 20.3. κscalar and κn−1 are intrinsic. In particular, κgauss isgauss 
intrinsic for n even, and |κgauss| is intrinsic for n ≥ 3 odd. 

Corollary 20.4. Let f : U Rn+1 be a hypersurface patch, defined on a →
connected set. Suppose that for each point in U , the matrix Hx has rank 
≥ 3. In that case, the intrinsic geometry of f determines the extrinsic one. 

Rn+1This means that if f̃ : U is another hypersurface patch with the →
same first fundamental form as f , then necessarily f̃(x) = Af(x) + c with 
A an orthogonal matrix, and c a constant. 
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To get some intuition for the intrinsic viewpoint, let’s look at the problem 
of simplifying the first fundamental form by a local change of coordinates. 
More precisely, let f : U Rn+1 be a hypersurface patch, and p a point of →
U
˜
. A local reparametrization near p is a partial reparametrization f̃ = f ◦φ : 

U → Rn+1, where p ∈ Ũ and ψ(p) = p. Such local reparametrizations are 
easy to find, because det(Dφ(p)) > 0 implies positivity of that determinant 
for points close to p. 

Lemma 21.1. For any point p, there is always a local reparametrization such 
that in the new coordinates, G̃p = 1 is the identity matrix. 

Lemma 21.2. Suppose that we have numbers Sijk (the indices i,j,k run from 
1 to n) such that Sijk = Sjik. Then there are numbers Tijk with Tijk = Tkji 

such that 
Sijk = Tijk + Tjik. 

Corollary 21.3. For any point p, there is always a local reparametrization 
such that in the new coordinates, G̃p = 1 and ∂xk G̃p = 0 for all k. 
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Our first generalization is to hypersurfaces in Minkowski space. Take Rn+1 

with the Minkowski form �X, Y �Min = X1Y1+X2Y2+ +XnYn−Xn+1Yn+1.· · ·

Definition 22.1. A spacelike hypersurface in Minkowski space is a smooth 
map f : U Rn+1, where U ⊂ Rn is an open subset, such that at every 
point x ∈ U

→
, the derivatives (∂x1 f, . . . , ∂xn f) are linearly independent and 

span a subspace of Rn+1 on which �·, ·�Min is positive definite. 

More concretely, f is spacelike if the matrices G(x) with entries Gij (x) = 
�∂xi f, ∂xj f�Min are positive definite for all x. We define this to be the first 
fundamental form of the hypersurface. Using the usual intrinsic formulae, we 
can now define the Christoffel symbols Γk and the Rs , hence the Riemann ij ujk

curvature operator R. 

Definition 22.2. The Gauss normal vector of a spacelike hypersurface 
is the unique ν = ν(x) such that �ν, ν�Min = −1, �ν, ∂xi f�Min = 0, and 
det(∂x1 f, . . . , ∂xn f, ν) > 0. 

Given that, we now define H by Hij = −�∂xi ν, ∂xj f�Min = �ν, ∂2 f�Min xixj 

and L = G−1H. Some of the usual equations pick up additional signs, for 
instance: 

∂2f � 
= Γk 

∂xi∂xj 
ij ∂xk f − Hij ν. 

k 

Similarly, the theorema egregium says that R = −Λ2(L). In particular, 
for spacelike surfaces, the Gauss curvature is κgauss = − det(H)/ det(G) = 
− det(L). 

Lemma 22.3 (no proof). If X ∈ Rn+1 has �X, X�Min < 0, then its Minkowski 
orthogonal complement X⊥ = {Y ∈ Rn+1 : �X, Y �Min = 0} has the prop­
erty that �·, ·�Min restricted to X⊥ is positive definite. 

Example 22.4. Hyperbolic n-space is defined to be Hn = {X ∈ Rn+1 : 
Xn+1 > 0, �X, X�Min = −1}. Suppose that f : U Rn+1 is some→
parametrization of Hn . Since �f, ∂xi f� = 0, it follows from the Lemma 
that f is spacelike. It has Gauss normal vector ν = ±f . Hence H = �G 
and L = �1. Hence, κgauss = −1. 

Two explicit parametrizations of hyperbolic n-space: the first is the Poincaré 
or conformal ball model 

f : U ,= {x ∈ Rn : �x� < 1} −→ Rn+1 

f(x) = 1 (2x1, . . . , 2xn, 1 + �x�2).
1−�x�2 



� 

Geometrically, this corresponds to taking a disc in Rn × {0}, and then pro­
jecting radially from the point (0, . . . , −1). In this model, 

= (1−�
4 
x�2)2 i = j, 

Gij 
0 i =� j. 

The second is the Klein or projective ball model 

f̃ : U = {x ∈ Rn : �x� < 1} −→ Rn+1 , 
1f̃(x) = (x1, . . . , xn, 1).√

1−�x�2 

Geometrically, one takes the disc tangent to Hn at the point (0, . . . , 0, 1), 
and then projects radially from the origin. The resulting first fundamental 
form is � 2

1 + xi i = j, 
G̃ij =	 1−�

x
x
ix
�

j 

2 (1−�x�2)2 

i = j. 
(1−�x�2)2 �
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Our second generalization is to submanifolds which are not hypersurfaces. 
Let U ⊂ Rn be an open subset. A regular map (or immersion) f : U →
Rn+m is a smooth map such that the partial derivatives ∂x1 f, . . . , ∂xn f are 
linearly independent at each point. The first fundamental form is then 
defined as usual by 

G = Df tr Df. · 

Definition 23.1. A set of Gauss normal vectors for f consists of maps 
ν1, . . . , νm : U Rn+m satisfying→ 

�νw, νw� = 1, 

�νv, νw� = 0 for u =� w, 

�νw, ∂xi f� = 0, 

det(∂x1 f, . . . , ∂xn f, ν
1, . . . , νm) > 0. 

Such maps may not necessarily exist over all of U , but they can be defined 
locally near any given x ∈ U by the Gram-Schmidt method. Moreover, any 
two choices defined on the same subset are related by 

ν̃w = avwν
v , 

v 

where avw are the coefficients of an orthogonal matrix A = A(x) with 
det(A) = 1. 

Definition 23.2. Given a set of Gauss normal vectors, we define the second 
fundamental forms Hw , w = 1, . . . ,m, by 

Hw = −�∂iν
w, ∂j f� = �νw, ∂2f/∂xi∂xj �.ij 

The corresponding shape operators are Lw = G−1Hw . 

One then has 
∂2f � � 

= Γij
k ∂xk f + Hij

wν, 
∂xi∂xj 

k w 

where the Christoffel symbols Γk are given by the usual intrinsic formulae. ij 
The Gauss equation says that 

Hw Γt Γs Γs 
sk − Hw 

sj ij − ∂j Γs 
ij ik

w t 
ij L

w 
ikL

w = ∂kΓs 
ik + kt − Γt 

jt. 

It is easy to check explicitly that the left hand side is independent of the 
choice of νw . The Riemann curvature operator, given by the usual intrinsic 
formulae, now reads � 

R = Λ2(Lw). 
w 
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Its eigenvalues are now less constrained than in the hypersurface case, hence 
the connection between intrinsic and extrinsic geometry is somewhat weaker. 

Our final generalization is to a completely intrinsic viewpoint. A Riemann­
ian metric on U ⊂ Rn is a family Gx of positively definite symmetric nxn 
matrices, depending smoothly on x ∈ U . For any such metric, and indepen­
dently of any embedding of U into another space, one can define Christoffel 
symbols, the Riemann curvature operator, and all its dependent quantities 
(scalar curvature, for instance). The proof of Corollary 18.6, for instance, is 
purely intrinsic and shows the following: 

Corollary 23.3. Take any Riemannian metric on R2 which is doubly-
periodic, G(x1+T1,x2) = G(x1,x2) = G(x1,x2+T2). Then 

κtot 
gauss = κgauss det(G)dx1dx2 = 0. 

[0,T1]×[0,T2] 


