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CHAPTER 1 

Local and global geometry of plane curves 
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Lecture 1 

Terminology from linear algebra: the scalar product of X, Y ∈ R2 is 

�X, Y � = X1Y1 + X2Y2. 

The length of a vector is 

�X� = �X, X�1/2 . 

The rotation by any angle α is the linear transformation of R2 with matrix 

cos(α) − sin(α)
A = .sin(α) cos(α) 

In particular, J = 0
1 
−
0
1 is anticlockwise rotation by 90 degrees. We write 

det(X, Y ) for the determinant of the matrix with column vectors X, Y ∈ R2 . 
Equivalently, 

det(X, Y ) = �JX, Y � or �X, Y � = det(X, JY ). 

Finally, suppose that X ∈ R2 is any vector, and Y ∈ R2 is a vector of length 
one. Then 

X = �Y, X�Y + det(Y, X)JY. 

Terminology from calculus: a map is called smooth if it is infinitely differ­
entiable. 

Lemma 1.1. Let I ⊂ R be an interval, and f : I R2 a smooth map such 
that �f(t)� = 1 for all t. Then 

→ 

f �(t) = det(f(t), f �(t))Jf(t). 

Definition 1.2. A regular curve is a smooth map c : I R2, where I ⊂ R 
is an interval, satisfying c�(t) = 0 for all � t. The curvature 

→
of c at t is 

det(c�(t), c��(t))
κ(t) = . 

�c�(t)�3 

In physics terminology, if distance in R2 is measured in meters m, and time 
on I in seconds s, then κ is of type 1/m. For instance, a circle of radius R 
has curvature 1/R if it is parametrized in an anticlockwise way, and −1/R 
if it is parametrized in a clockwise way. 

Proposition 1.3 (Frenet equation of motion). For a regular curve c, 

d c�(t) c�(t) 
dt �c�(t)� 

= �c�(t)�κ(t)J 
�c�(t)� 

= κ(t) Jc�(t). 

Corollary 1.4. If κ(t) = 0 for all t, then c(I) ⊂ R2 is part of a straight 
line. 

Corollary 1.5. Suppose that κ(t) = 1/R is a nonzero constant. Then 
c + RJ �

c
c

�
�� is constant, and therefore c is part of a circle of radius |R|. 



Lecture 2 

A graph is a curve of the form c(t) = (t, f(t)). 

Lemma 2.1. The curvature of a graph is 
f ��(t)

κ(t) = .
(1 + f �(t)2)3/2 

A unit speed curve is a curve c such that �c�(t)� = 1. 

Lemma 2.2. The curvature of a unit speed curve is 

κ(t) = det(c�(t), c��(t)). 

Moreover, we have 
c��(t) = κ(t) Jc�(t), 

and in particular |κ(t)| = �c��(t)�. 

One can think of this as the motion of a charged particle in a magnetic field 
pointing “out of the plane”, with strength κ(t). 

Proposition 2.3. For every κ : I R there is a unit speed curve c : I R→ →
whose curvature is κ. Moreover, c is unique up to translations and rotations. 

It is often useful to change the way in which a curve is parametrized. Let 
c : I R2 be a regular curve, and ψ : Ĩ I a smooth function such that → →
ψ�(t) > 0 for all t. Then c̃(t) = c(ψ(t)) is again a regular curve, called a 
partial reparametrization of c. 

Proposition 2.4. If c̃(t) = c(ψ(t)) is a partial reparametrization, their 
curvatures are related by κc̃(t) = κc(ψ(t)). 

If ψ : Ĩ I is onto, we call c̃ a reparametrization of c. Such changes of →
parameter can be inverted, as the following well-known statement shows. 

Lemma 2.5 (from calculus). Let Ĩ ⊂ R be an interval, and ψ : Ĩ → R a 
smooth function such that ψ�(t) > 0 for all t. Then ψ(Ĩ) = I is an interval, 
and ψ is a one-to-one map from I to Ĩ. Moreover, its inverse map φ = ψ−1 

is again smooth, and by the chain rule φ�(t) = 1/ψ�(φ(t)). 

Lemma 2.6. Let d = (d1, d2) be a curve such that d�1(t) > 0 for all t. One 
can then reparametrize it to a graph. 

Lemma 2.7. Every curve d admits a reparametrization which is a unit speed 
curve. 



Lecture 3 

Let c, d be two unit speed curves. We say that c and d osculate at t0 if they 
are both defined at that point and satisfy 

c(t0) = d(t0), c�(t0) = d�(t0), c��(t0) = d��(t0). 

Because the curves are unit speed, c��(t0) = d��(t0) is equivalent to saying 
that κc(t0) = κd(t0). 

Proposition 3.1. Let c be a unit speed curve, and t0 a point where κ(t0) =�
0. Then there is a unique circle which osculates c at t0 (the osculating circle). 

The curvature |κ(t0)| is then the inverse radius of the osculating circle at 
that point. If the curvature is zero, there is no osculating circle, and instead 
the curve osculates its tangent line. 

Proposition 3.2. Let f : U R be a smooth function, defined on an open 
subset U ⊂ R2 . Let c : I →

→
U be a regular curve, which is contained in 

its level set {f(x) = a}. Then, at every point t such that x = c(t) satisfies 
�f(x) = 0, we have �

±κ(t) = 
�J�f(x), D2f(x)J�f(x)�

. 
��f(x)�3 

Here, D2f(x) is the Hessian (the matrix of second derivatives). 

The sign is determined as follows. If det(�f(x), c�(t)) > 0, then κ(t) is the 
right hand side of the equation above. Otherwise, −κ(t) is the right hand 
side. 

Example 3.3. Let f : R2 R be a function with f(0) = 0, Df(0) = 0, and →
D2f(0) positive definite (so that the origin is a local minimum). Then as 
one gets closer and closer to the origin, the curvature of the level sets goes 
to infinity. 
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Lecture 4


As the first of our two generalizations, we look at the Minkowski plane, 
which is R2 with the indefinite bilinear form �X, Y �Min = X1Y1 − X2Y2. 
The role of J is played by the matrix 

0 1 
K = .1 0 

In particular �X, KX�Min = 0, which is the analogue of det(X, X) = 0 in 
the Minkowski context. Take two vectors X, Y where �Y, Y �Min = 1. One 
can then write 

X = �Y, X�MinY − �KY, X�MinKY. 

A regular curve c : I → R2 is called spacelike if �c�(t), c�(t)�Min > 0 for all t. 
We define the curvature of c to be 

�c�(t),Kc��(t)�Min 
κ = . 

�c�(t)�3 

The equation of motion is then 

d c� 
= −κ(t)Kc�. 

dt �c�, c�� 1/2 
Min 

The curvature is reparametrization invariant. Every spacelike curve admits 
a reparametrization c̃ = c(ψ) such that �c̃�(t), c̃�(t)�Min = 1 (for the opposite 
case of timelike curves, this would be called proper time parametrization). 
For curves with this property, the equation of motion simplifies to 

c��(t) = −κ(t)Kc�(t). 

Example 4.1. c(t) = (cosh(t), sinh(t)) is the analogue of a circle. It is 
parametrized with unit speed, and its curvature is constant equal to −1. 



� �� � 

Lecture 5


Our second generalization is to curves in higher-dimensional Euclidean space. 
A regular curve in Rn is a smooth map c : I → Rn, where I ⊂ R is an 
interval, such that c�(t) =� 0 for all t. The naive generalization of our two-
dimensional definition would be 

det(c�, c��, . . . , c(n)) 
�c�(t)�n(n+1)/2 

, 

where det is the determinant of the matrix with given column vectors. This 
is reparametrization invariant. Physically it’s of type m−n(n−1)/2, where m 
is the unit of distance in Rn . Frenet theory decomposes this as a product of 
curvatures, each carrying different information. 

Lemma 5.1 (Gram-Schmidt orthogonalization). Let (v1, . . . , vk) be linearly 
independent vectors. There are unique orthonormal vectors (e1, . . . , ek) of 
the form � 

ei = fij vj 

j≤i 

where fii > 0. Note that in particular, each (e1, . . . , ei) spans the same 
subspace as (v1, . . . , vi). An explicit inductive formula is 

ei = 
vi − �vi, e1�e1 − · · · − �vi, ei−1�ei−1 

. 
�vi − �vi, e1�e1 − · · · − �vi, ei−1�ei−1� 

Lemma 5.2. Let E(t) be a family of orthogonal matrices, depending differ­
entiably on t. Write 

d 
E(t) = E(t)A(t). 

dt 
Then the matrices A(t) are skewsymmetric, A(t)tr = −A(t). 

Definition 5.3. c : I Rn is a Frenet curve if for all t, the vectors →
(c�(t), c��(t), . . . , c(n−1)(t)) are linearly independent. 

One then defines the Frenet frame (e1(t), . . . , en(t)) as follows. First, ap­
ply Gram-Schmidt to (v1(t) = c�(t), . . . , vn−1(t) = c(n−1)(t)), which yields 
(e1(t), . . . , en−1(t)). Then, take the unique vector en(t) which is orthogonal 
to (e1(t), . . . , en−1(t)) and satisfies det(e1(t), . . . , en(t)) = 1. 

The components of the last vector are 
j-th unit vector 

en,j = det(e1, . . . , en−1, (0, . . . , 1, . . . , 0) ). 

Lemma 5.4. Frenet frames are reparametrization invariant. Explicitly, if c 
is a Frenet curve and d(t) = c(φ(t)) a reparametrization, then d is again 
Frenet, and its Frenet frame is related to that of c by 

fi(t) = ei(φ(t)). 
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Lecture 6 

Take a Frenet curve c in Rn. Let E(t) be the matrix with columns e1(t), . . . , en(t). 

Theorem 6.1. We have
 ⎞⎛ 
0 −κ1(t) 0 · · · 

κ1(t) 0 −κ2(t) 
0 

⎜⎜⎝

⎟⎟⎠


d 
E(t) = �c�(t)� E(t)

dt 
· · ·


.
0 κ2(t) −κ3(t) · · ·

· · · 

Here κ1(t), . . . , κn−2(t) > 0, and κn−1(t) ∈ R. Concretely, 

κi(t) = 
�ei+1(t), e�i(t)� 

�c�(t)� 
. 

The functions κi(t) are called the Frenet curvatures of c. Physically, they 
are again of type 1/m. As usual they are reparametrization invariant. 

Proposition 6.2. Let c be a Frenet curve in Rn . Then 
n−1

= κn
i 
−i . 

det(c�, c��, . . . , c(n)) 
�c��n(n+1)/2 

i=1 

Example 6.3. A regular plane curve is always Frenet. The Frenet basis is 
e1(t) = c�(t)/�c�(t)�, e2(t) = Jc�(t)/�c�(t)�. κ = κ1 is the ordinary curva­
ture, and the Frenet equations of motion reduce to Proposition 1.3. 

Example 6.4. Let c : I R3 be a space curve, parametrized with unit →
speed. This is Frenet if and only if c��(t) = 0. The Frenet basis is �

c��(t) 
e1(t) = c�(t), e2(t) = , 

�c��(t)� 

e3(t) = 
c�(t) × c��(t) 

. 
�c��(t)� 

κ = κ1 is called the curvature and τ = κ2 the torsion. Concretely 

κ = �e2(t), e�1(t)� = �c��(t)�, 

τ = �e3(t), e�2(t)� = 
�c�(t) × c��(t), c���(t)� 

= 
det(c�, c��, c���) 

. 
�c��(t)�2 �c���2 

The Frenet equations are 

e�1 = κe2, e�2 = τe3 − κe1, e�3 = −τe2. 
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Lecture 7 

Throughout the following discussion, f : R R2 is a T -periodic smooth 
function (f(t + T ) = f(t) for all t), such that 

→
�f(t)� = 1 for all t. 

Lemma 7.1. One can write f(t) = (cos θ(t), sin θ(t)), where θ : R R is→
a smooth function, unique up to adding constant integer multiples of 2π. 
Specifically, all such functions are of the form 

t 

θ(t) = θ0 + det(f(τ), f �(τ )) dτ. 
t0 

where (cos θ0, sin θ0) = f(t0). 

Definition 7.2. The degree of f is � T1 1
deg(f) = 

2π 
(θ(T ) − θ(0)) = 

2π 0 
det(f(τ ), f �(τ)) dτ ∈ Z. 

Instead of [0, T ], one can take any other interval [t0, t0 + T ]. 

Lemma 7.3. If deg(f) = 0, � f is a surjective (onto) map to the unit circle. 

Proposition 7.4. Let �p� = 1 be a point on the circle with the following 
properties: (i) There are only finitely many 0 ≤ t1 < t2 < < tm < T for· · · 
which f(tk) = p; (ii) each such tk satisfies f �(tk) = 0. In that case, �

m

deg(f) = sign det(p, f �(tk)). 
k=1 

Here is a popular application of degrees. Let f be more generally a T ­
periodic function R → R2 , and q ∈ R2 a point not on its image. The 
winding number of f around p is the degree of the map f(t) − q/�f(t) − q�. 
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Lecture 8 

Definition 8.1. A closed curve of period T is a regular curve c : R R2 →
such that c(t + T ) = c(t) for all t. We say that c is simple if it has no 
selfintersections. This means that for all 0 ≤ s < t < T , we have c(s) =� c(t). 

Theorem 8.2 (Jordan curve theorem; very sketchy proof). Let c be a simple 
closed curve. Then, the complement of the image of c is the disjoint union of 
two connected open subsets, one bounded (the inside) and one unbounded 
(the outside) 

The hard step in the proof is to show that the inside and outside are not 
connected to each other. For that, one uses winding numbers. Points in the 
inside have winding number =� 0, and points in the outside have winding 
number 0. On the other hand, the winding number is locally constant. 

Definition 8.3. The total curvature of a closed curve is defined to be � T 

κtot(c) = κ(t) �c�(t)� dt. 
0 

Physically, κtot is a dimensionless quantity. 

Lemma 8.4 (partial proof). Let c be a closed curve of period T , and set 
L = 

� T �c�(t)� dt. Let d be the unit speed reparametrization of c. Then d is0 
again a closed curve, of period L. Moreover, the total curvature of d is the 
same as that of c. 

Proposition 8.5. κtot(c)/2π is the degree of f(t) = c�(t)/�c�(t)�. In par­
ticular, it is always an integer. We call it the rotation number of the curve 
(not to be confused with the winding number: the rotation number is the 
winding number of c�(t) around 0). 

Corollary 8.6. Let c be a closed curve of period T . Suppose that there 
are only finitely many points 0 ≤ t1 < t2 < < tm < T where c�2(tk) = 0, · · · 

(tk) > 0, and that any such point satisfies κ(tk) = 0. Then, the rotation 
number is 
c�1 �

m

κtot(c)/2π = sign(κ(tk)). 
k=1 
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Lecture 9


Theorem 9.1 (Hopf Umlaufsatz; sketch proof). Let c be a simple closed 
curve. Then κtot(c) = ±2π. 

The sign here can be determined as follows. Let t be a point where c2(t) 
reaches its (global) minimum. Then the sign of κtot(c) equals that of c�1(t). 

Definition 9.2. Let c be a simple closed curve. We say that c is convex if the 
following holds. Whenever c is tangent to some line {a1x1 +a2x2 = b} in the 
plane, it is entirely contained in one of the two half-planes {a1x1 +a2x2 ≤ b}, 
{a1x1 + a2x2 ≥ b}. 

Proposition 9.3 (partial proof). A simple closed curve is convex if and 
only if its curvature never changes sign. 

Corollary 9.4 (sketch proof). Let c be a closed curve of period T . Then � T 

|κ(t)| �c�(t)� dt ≥ 2π. 
0 

Here is a useful generalization of the Umlaufsatz. Take a closed curve c of 
period T . Suppose that c takes on the same value at most twice in [0, T ). 
Moreover, for any 0 ≤ s < t < T such that c(s) = c(t), we also require c�(s) 
and c�(t) to be linearly independent. In that case, we say that c has normal 
self-intersections. 

Theorem 9.5 (Whitney; no proof). Let c be a closed curve with normal 
self-intersections. Assume that it is parametrized in such a way that c2(t) 
reaches a global minimum at t = 0. Then 

κtot(c)/2π = sign c� (0) − sign det(c�(s), c�(t)),1

(s,t) 

where the sum is over all 0 ≤ s < t < T with c(s) = c(t). 
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Lemma 10.1 (Sturm-Hurwitz). Let f : R R be a continuous 2π-periodic →
function such that � 2π � 2π � 2π 

f(t) dt = 0, f(t) cos(t) dt = 0, f(t) sin(t) dt = 0. 
0 0 0 

Then f has at least four zeros in the region [0, 2π). 

Lemma 10.2. Let h be a smooth 2π-periodic function. Then h(t) + h��(t) 
has at least four critical points (points where its derivative vanishes) in the 
region [0, 2π). 

Lemma 10.3. Take a simple closed curve whose curvature is everywhere 
positive. By reparametrizing in a suitable way, one can achieve that the 
curve has period 2π and satisfies 

c�(t) 
�c�(t)� 

= (cos(t), sin(t)). 

In that case, 
1 

κ(t) = . 
�c�(t)� 

Theorem 10.4 (Four Vertex theorem, strictly convex version). Take a sim­
ple closed curve whose curvature is everywhere positive. Then there are at 
least four points where κ�(t) = 0. 


