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HOPF FIBRATIONS, WHITEHEAD THEOREM 

Example 0.1. Applying the LES of a fibration to the Hopf fibration 

S1 S3 S2 → →

we deduce 

π2(S2) ∼= Z 

= πk(S2) for k > 2πk(S3) ∼

In particular, assuming the result π3(S3) = Z, we may deduce that π3(S2) = Z, 
generated by the Hopf map η. 

1. Hopf invariant 

Suppose that f : S2n−1 Sn is a based map. The cofiber C(f) has cohomology →

H∗(C(f)) = Z{ x2n}xn} ⊕ Z{

generated by xn in degree n and x2n in degree 2n. The Hopf invariant of f is 
defined by the formula 

(xn)2 = HI(f) · x2n. 

Because there are two choices of generators of each of these groups, the Hopf in­
variant is determined only up to sign. 

On the homework, you showed that for the Hopf fibration 

S3 η 
S1 →→ − S2 

the cofiber was given by 

C(η) = CP 2 . 

Replacing C with the real division algebras H and O gives similar fibrations 

S7 ν
S3 →→ − S4 

S7 S15 σ 
S8 → −→

and the maps ν and σ also may be shown to have Hopf invariant 1. 
It turns out that any real division algebra D gives rise to a “Hopf fibration”. 

The following theorem of Adams therefore implies that the only (potentially non­
associative) real division algebras are R, H, C, and O. 

Theorem 1.1 (Adams). The only maps of Hopf invariant 1 are η, ν, and σ. 

Date: 3/1/06. 

1 



� 

2. Whitehead theorem 

Definition 2.1. A map f : X → Y is an n­equivalence if for all x ∈ X the induced 
maps 

f∗ : πk (X, x) → πk (Y, f(x)) 
are isomorphisms for k < n and is an epimorphism for k = n. 

Remark 2.2. A space Z is n­connected if πk (Z, z) = 0 for all k ≤ n. The LES 
of a fibration implies that a map f is an n­equivalence if and only if the homotopy 
fiber F (f) is (n− 1)­connected. 

We aim to prove the following theorem 

Theorem 2.3. Suppose that Z is a CW­complex of dimension < n, and that 
f : X Y is an n­equivalence. Then the induced map → 

[Z,X] [Z, Y ]→ 

is an isomorphism. 

This theorem is true for n = ∞ as well. Applying it to Z = Y , we get 

Corollary 2.4. If f : X Y is a weak equivalence between CW­complexes, then →
it is a homotopy equivalence. 

We will prove Theorem 2.3 in an intuitive way for n < ∞. The idea is that CW­
complexes Z are built out of spheres, so homotopy groups are sufficient to detect 
isomorphisms on [Z,−]. 

We shift to the pointed context with the following lemma. 

Lemma 2.5. Suppose that X is pointed, and Z is well pointed. Then there is a 
split short exact sequence of pointed sets 

[Z,X]∗ → [Z,X] π0(X)→ 

Proof. Since Z is well­pointed, there is a cofibration sequence 

S0 → Z+ → Z = Z+/S0 . 

Now apply [−, X]∗, using the fact that the maps in the sequence above admit 
retractive splittings. � 

It therefore suffices to prove 

Theorem 2.6. Suppose that Z is a connected pointed CW­complex of dimension 
< n < ∞, and that f : X Y is an n­equivalence of pointed spaces. Then the 
induced map 

→ 

[Z,X]∗ → [Z, Y ]∗ 

is an isomorphism. 

Proof. By adding whiskers to the cells to make the attaching maps pointed, con­
nected, pointed CW­complexes Z may be viewed as inductive cofiber sequences 

Sn Z [k] Z [k+1]→ → . 

where Z [k] is the k­skeleton. Applying [−, X]∗ → [−, Y ] to the above sequence, ∗ 

induction on k and the 5­lemma gives the result. � 
2 



� � 

Remark 2.7. The application of the 5­lemma in the proof above is delicate, be­
cause in the sequence 

[ΣZ [k], X]∗ → [ Sk+1, X]∗ → [Z [k+1], X] [Z [k], X]∗ → [ Sk, X]∗ → ∗ 

the last three terms are potentially only pointed sets, not groups. This is OK: the 
five lemma works in this context, provided the second term acts on the third term, 
with orbits the preimages of elements of the fourth term. This action is given by 
dualizing a generalization of the pinch map: for a map g : A B there is a coaction → 

C(g) → ΣA ∨ C(g). 

Remark 2.8. The case of n = ∞ is not obviously implied by the previous theorem, 
because it is not generally true that the canonical map 

[Z,X] lim[Z [n], X]∗∗ → ←− 
is an isomorphism. 
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