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LECTURE 5: COFIBRATIONS, WELL POINTEDNESS, WEAK 

EQUIVALENCES, RELATIVE HOMOTOPY 

In other words, today’s lecture consisted of a hodgepodge of odds and ends. 

1. Cofibrations and well pointedness 

If i : A � X is an inclusion of a subcomplex into a CW complex, then there is→ 
an isomorphism 

Hn(X, A) ∼ Hn(X/A). 

This may not hold for general subspaces A in X. We abstract a property that we 
will later see makes this true. 

Let ev0 : Map(I, Y ) → Y be the “evaluation at 0” map. 

Definition 1.1. A map i : A X is a cofibration if it satisfies the homotopy→
extension property (HEP): for each map f : X Y , and each homotopy H : A →
Map(I, Y ) making the square commute: 

→ 

H 
A // Map(I, Y ) 

::
ev0i 

H �� ��
//X Y 

f 

there exists an extension homotopy H making the upper and lower triangles com­
mute. 

Remark 1.2. It turns out that a cofibration is necessarily an inclusion with closed 
image. Being a cofibration is equivalent to being an neighborhood deformation 
retract (NDR) pair (see May). This roughly means that the is a neighborhood of A 
in X for which A is a deformation retract (the actual definition is more complicated). 
Thus it is common for closed inclusions to be cofibrations. 

Definition 1.3. A space X ∈ Top∗ is well­pointed if the inclusion ∗ � X is a→
cofibration. 

Let Susp(X) be the unreduced suspension. It is the space obtained from X × I 
by collapsing the ends of the cylinder. 

In the homework problem where I asked you to show Hn(X) ∼ Hn+1(ΣX) I 
should have assumed that X was well pointed. I am assigning the following in the 
next homework. 

Lemma 1.4. Suppose that X is well pointed. Then the quotient map 

Susp(X) → ΣX 

is a homotopy equivalence. 
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Not every pointed space is well pointed. However, if a pointed space X is not 
well pointed, we can form a new “whiskered” space Xw = X ∪{0} I where we glue 
an interval to the basepoint. We give Xw the basepoint {1}. You will verify: 

The inclusion X � Xw is a deformation retract. • → 
• Xw is well pointed. 

2. Weak equivalences 

The action of the fundamental groupoid on the higher homotopy groups is de­
scribed by a functor 

πk (X, −) : πoid(X) → Groups. 
In particular, because πoid(X) is a groupoid, a path γ from x to y must induce an 
isomorphism 

γ∗ : πk(X, x) → πk(X, y). 

Definition 2.1. A map of spaces f : X Y is a weak homotopy equivalence, or 
simply a weak equivalence if 

→ 

(1) f∗ : π0(X) → π0(Y ) is a bijection. 
(2) f∗ : πk (X, x) → πk(Y, f(x)) is an isomorphism for all k > 0 and all x ∈ X. 

We used the action of the fundamental groupoid to prove the following proposi­
tion. 

Proposition 2.2. Homotopy equivalences are weak homotopy equivalences. 

3. Relative homotopy groups 

Let X be pointed, and let A be a subspace of X containing the basepoint. We 
define relative homotopy groups 

πk (X, A) = [(Ik, ∂Ik , ∂Ik − (Ik−1 × {0})), (X, A, ∗)]. 
That is, maps of the k­cube which send the boundary into A, and which sent all 
but one of the faces of the cube to the basepoint, up to homotopies which preserve 
these conditions. 

For k = 0, relative homotopy is not defined. For k = 1, relative homotopy is a 
set. For k ≥ 2, relative homotopy is a group, with the group operation given by 
juxtaposition of cubes. For k ≥ 3, these groups are abelian. 

Much like relative homology, relative homotopy fits into a long exact sequence: 

· · · → πk (A) i∗− ∗−πk(X) 
j→ → πk (X, A) 

∂ −→ πk−1(A) → · · · 
· · · → π1(X, A) → π0(A) → π0(X) 

The end of this sequence must be interpreted appropriately, because these are just 
sets: π1(X) acts on π1(X, A), with orbits given by the subset of π0(A) sent to the 
basepoint component in π0(X). 
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