LECTURE 1: CATEGORY THEORY

Category theory is very dry. It is nevertheless a useful language to speak of
certain things.

1. CATEGORIES

Definition 1.1. A category consists of:
(1) A collection of objects ObC.
(2) For any pair of objects z,y € ObC, a set of morphisms Map,(z, y).
(3) For each z, an identity morphism 1, € Map,(z, x).
(4) For each z,y, z, a composition map
Mape(y, z) x Map¢(z, y) — Mape(z, 2)

(f,9) = fg.

These satisfy the following axioms:

o (Identity) for each f € Mape(z,y), we have 1, f = f1, = f.
e (Associativity) for composible f, g, h, we have (fg)h = f(gh).

Examples 1.2.

(1) Sets: The category of sets, with morphisms all maps of sets.

(2) Gp: The category of groups, with morphisms given by group homomor-
phisms.

(3) Ab: The category of abelian groups, with morphisms given by group ho-
momorphisms.

(4) Modg: For R a ring, the category of R-modules, with morphisms the ho-
momorphisms of R-modules.

(5) Top: The category of topological spaces, with morphisms given by the
continuous maps.

(6) For G a group, we may associate to G a category G. The category G has
one object (call it *). The morphisms Map (x, *) are given by the set G.
The composition law is given by the group multiplication.

If C is a category, a morphism f : x — y is an isomorphism if there exists an
inverse morphism f~':y — z such that ff~! = 1, and ff=1,.
2. MAPS BETWEEN CATEGORIES: FUNCTORS

Definition 2.1. Let C and D be categories. A (covariant) functor consists of a
map

F:0ObC — ObD
together with maps
F : Mape (z,y) — Mapp (F(z), F(y))
for all objects z,y of C, such that:
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(1) F(12) = 1),
(2) F(fg) =F(f)F(g)-

The notion of a contravariant functor is identical, except the arrows are reversed.
Definition 2.2. A (contravariant) functor consists of a map
F:0C — ObD
together with maps
F: Mape (z,y) — Mapp (F(y), F(z))

for all objects x,y of C, such that:

(1) F(]-z) = ]-F(nc)v
(2) F(fg) = F(9)F(f).

Given a category C, we may form the opposite category C°? by keeping the
objects the same, but reversing the direction of all of the morphisms:

Mapeor (z,y) = Mape (y, x).
Then there is a bijective correspondence:

{contravariant functors C — D}

!

{covariant functors C? — D}

Examples 2.3.
(1) The forgetful functor

U: Gp — Sets.

It associates to a group G the underlying set U(G) (forget the group mul-
tiplication).
(2) The free group functor

F: Sets — Gp.

It associates to a set S the free group F'(S) generated by S.
(3) Let A be an object of Ab, the category of abelian groups. Then

Hom(A,—) : Ab — Ab
B — Hom(A, B)
is a covariant functor (why?). Dually,
Hom(—, A) : Ab — Ab
B — Hom(B, A)

is a contravariant functor (again, why?). In fact, we may regard Hom(—, —)
as giving a covariant functor

AbP x Ab — Ab

where the category Ab°? x Ab is the product category. It has objects given
as pairs of objects, and morphisms given by pairs of morphisms.
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(4) The association X +— 71(X) gives a functor
m : Top, — Gp

(here Top, is the category of based spaces).
(5) The association X + H¥(X; R) gives a contravariant functor

H*(—;R) : Top — Modp
(here R is a ring).

If you want to think about functors as maps between categories, then you should
think about natural transformations as maps between functors, that is, maps be-
tween maps between categories!

Definition 2.4. Let
FG:C—D

be a pair of (contravariant) functors. A natural transformation
n:F—G
consists of a collection of morphisms in D
e s Fz) — G(z)

for each x € C. These morphisms must satisfy the following naturality condition:
for each morphism f : z — y in C, we require that the following diagram commute:

N

F(z) — G(z)

Example 2.5. Let A, B be an objects of Ab, and consider the contravariant func-
tors
Hom(—, A),Hom(—, B) : Ab — Ab.

Then a homomorphism f : A — B gives rise to a natural transformation

f« : Hom(—, A) — Hom(—, B).
It is given by the maps

f« : Hom(X, A) — Hom(X, B)

g~ fg.



