
Problem Set 2 
18.904 Spring 2011 

Instructions. Same as last time. Due: Friday, March 18. 

Problem 1. Let Sn be the n-sphere and fix a base point 1 ∈ Sn . For a pointed topological space 
(X, x0) let πn(X, x0) denote the set of homotopy classes of maps (Sn , 1) → (X, x0). 

(a) Suppose X is contractible. Prove that πn(X, x0) is a one point set, for any n. 
(b) Suppose p : ( XX, xX0) → (X, x0) is a covering space. Show that p∗ : πn( XX, xX0) → πn(X, x0) is 

a bijection for n ≥ 2. [Here p∗ is defined by p∗(f) = [p ◦ f ]; a standard argument shows this 
is well-defined.] 

(c) Let T be a torus (i.e., (S1)d) and t0 ∈ T a basepoint. Prove that πn(T, t0) is a one point set 
for n ≥ 2. [Hint: what is the universal cover of T ?] This is not at all visually obvious! 

Remark. The set π0(X, x0) is in fact the set of path components of X (convince yourself of this!). This set 
has no extra structure, such as that of a group. Of course, we know that π1(X, x0) is a group, and can 
be any group. For n ≥ 2, the sets πn(X, x0) are in fact abelian groups in a natural way. These are the 
higher homotopy groups. Part (b) above says that the higher homotopy groups don’t change when passing 
to covers, in constrast to the fundamental group. 

Problem 2. As is well-known, there’s no way to define a continuous square root function on the 
entire complex plane. More generally, one cannot always find a square root of a complex valued 
function on a given topological space. We’ll show how covering spaces can be used to solve this 
problem. (In what follows, “function” means “continuous function.”) 

(a) Let X be a topological space and let f : X → C be a function which is never equal to 0. 
Show that there exists a natural degree two covering space p : XX → X such that p ∗f has a 
square root, i.e., there exists a function fX : XX → C such that fX(x)2 = f(p(x)). 

(b) Show that f has a square root if and only if p : XX → X is a trivial covering space, i.e., 
isomorphic to the covering space X I X → X. 

(c) Establish analogues of (a) and (b) with logarithms taking the place of square roots. 

Remark. Notice that if X is simply connected then any non-vanishing complex valued function on X has a 
square root and logarithm, since any covering space is then trivial. 

Problem 3. Let C be a category and let A1 and A2 be two objects of C. A triple (B, p1, p2) 
consisting of an object B of C and morphisms p1 : B → A1 and p2 : B → A2 is called a product of 
A1 and A2 if it satisfies the following condition: given any triple (T, f1, f2) consisting of an object 
T and morphisms f1 : T → A1 and f2 : T → A2, there exists a unique map f : T → B such that 
f1 = p1 ◦ f and f2 = p2 ◦ f . We say that “C has products” if for every A1 and A2 there is a product 
(B, p1, p2). 

; ;(a) Suppose that (B, p1, p2) and (B;, p1, p ) are two products of A1 and A2. Show that there2
; ;exists a unique isomorphism i : B → B; such that p1 = p1 ◦ i and p2 = p2 ◦ i. 

(b) For each category	 C in the following list, say whether C has products or not. If it has 
products, describe the product of two general objects (proof not required). If not, give 
an example of two specific objects which do not have a product (with a reason, but not 
necessarily a formal proof). 

(i) The category of topological spaces. 
(ii) The category of pointed topological spaces. 
(iii) The category of groups. 
(iv) The category of covering spaces of a fixed space X. 
(v) The category whose objects are sets and whose morphisms are bijections of sets. 
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As with most notions in category theoy, the notion of a product has a dual notion, that of a 
“coproduct,” obtained by reversing all the arrows in the definition. Precisely, a coproduct of A1 

and A2 is a triple (C, i1, i2) consisting of an object C and morphisms i1 : A1 → C and i2 : A2 → C, 
with a universal property similar to that of the product. 

(c) Carry out part (b) with coproducts in place of products. 

Remark. Due to part (a), products are essentially unique, and there is no harm in speaking of “the” product 
of two objects A1 and A2 (when it exists). This is usually denoted A1 × A2. Similar remarks apply to the 
coproduct; the typical notation is A1 I A2. One of the wonders of category theory is that, after defining a 
category, all these things like product and coproduct come “for free” — you don’t need to give new definitions 
for each category. 

Problem 4. In this problem, we’ll examine covering spaces of topological groups. 
(a) Let G be a path-connected topological group and let p : GX → G be a covering map with 

GX path-connected. Let X1 be an element of GX mapping to 1 under p. Show that there is a 
unique group law on GX such that X1 is the identity, p is a homomorphism and multiplication 
and inversion are continuous. [Hint: use path lifting!] 

(b) Let	 G = SL(2, R). In the last problem set, we saw that π1(G, 1) = Z. By the Galois 
correspondence, we therefore have a unique connected degree two covering space GX → G 
(up to isomorphism), and by (a) we have a canonical group structure on GX after choosing X1. Give a description of GX, as a topological group. [Hint: look up “metaplectic group” on 
Wikipedia.] 

Part (b) is really hard, don’t feel bad if you cannot get it (but do try)! 

Problem 5. Let X be a topological space such that every point has a neighborhood basis of 
contractible open sets. We’ll show how the groups π1(X, x), for x varying, can be put together to 
form a covering space of X. The construction is similar to the that of the universal cover. 

Let Π(X) denote the set of all homotopy classes of loops in X, i.e., the set of all classes [γ] where 
γ : I → X satisfies γ(0) = γ(1). Given [γ] ∈ Π(X) and a contractible open neighborhood U of 
γ(0), let U[γ] consist of all loops of the form [ηγη−1] where η is a path in U with η(1) = γ(0). We 
topologize Π(X) by taking the U[γ]’s to be a basis. Let p : Π(X) → X be defined by [γ]  → γ(0). 

(a) Show that p is a covering space map. 
(b) Construct a canonical bijection fx : π1(X, x) → p−1(x) for any x ∈ X. 
(c) Let h be a path in X from x to y. Let ih : π1(X, x) → π1(X, y) be the usual isomorphism. 

Define a map i; : π1(X, x) → π1(X, y) as follows. Given [γ] ∈ π1(X, x), regard [γ] as an h 

element of p−1(x) via the isomorphism fx. Let Xh : I → Π(X) be a lift of h with Xh(0) = [γ]. 
Define i; ([γ]) to be Xh(1) ∈ p−1(x1), regarded as an element of π1(X, x1) via f−1 . Show that h y 
ih h.= i;

(d) Show that Π(X) is path-connected if and only if X is simply connected. 
(e) Suppose that X is path-connected and let x0 ∈ X be a basepoint. Let q : X ×π1(X, x0) → X 

be the trivial covering map, given by q(x, [γ]) = x. Show that (Π1(X), p) is isomorphic to 
(X × π1(X, x0), q) as covering spaces if and only if π1(X, x0) is abelian. [Hint: use the 
result from the first problem set that ih = ih' for any two paths h and h; if π1(X, x0) is 
abelian. You may also use its converse, without proof. It may also be useful to consider the 
categorical form of the Galois correspondence.] 

Remark. The covering space Π(X) is in some ways more natural than the fundamental group, since it does 
not depend on a base point. There is a natural multiplication map Π(X) ×X Π(X) → Π(X), where ×X 

denotes the product in the category of covering spaces of X, which gives each fiber p−1(x) a group law in 
such a way that each fx is an isomorphism of groups. The covering space Π(X) is closely related to the 
“fundamental groupoid.” 
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