K.1

Compactly generated spaces

Definition. A space X 1is said to be compactly generated if it satisfies
the following condition: A set A. is open in X if AnC is open in C

for each compact subspace C of X.

Said differently, a space is compactlf generated if its topology is coherent
with the collection of compact subspaces of X. (See Notes G for a discussion
of coherent topologies.) Many spaces are compactly geherated; for instance,
locally compact spaces are compactly generated, and so are first-countable spaces.
(See Lemma 46.3.)

Compactly generated spaces are useful when studying various topologies
on the space ¥.(X,Y) of continuous functions f : X-%Y, but they occur
in other contexts as well. Here we explore their relation to proper maps

and to perfect maps.

Definition. A map f: X—-%Y is said to be proper if for every compact
subspace C of Y, the subspace f—l(C) of X 1is compact.

Roughly speaking, f 1is proper if it does not collapse any subset of X
that runs off to infinity onto a compact subspact of Y, which does not run off

to infinity.

Theorem K.1. Tet f: X—Y be a continuous map. If Y is a compactly

generated Hausdorff space, and if £ 1is proper, then £ 1is a closed map.

Proof. Let A e a closed set in X. To show f(A) is closed, we
need only to show that f(A)AC 1is closed in C for each compact subspace
C of Y. Now

ga)AC = £(£(C)NA).
The space f'l(C) is compact because f is proper, so its closed subspace
f_l(C)F\AA is also compact. The image of this set under f 1is compact,

and is therefore closed in Y. 4
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Corollary K.2. Let f: X—»Y be continuous and injective.. If f

is proper, and Y 1is compactly generated Hausdorff, then £ 1is an imbedding.

whose image is a closed subspace of Y.

Example 1. Let f: [O,ZTD:~$E62 be given by the equation f(t) = (cos t,sin t).
Then f is continuous and injective, and its image is the unit circle, which

is closed in R“. However, £ 1is not proper; the inverse image of the unit

circle is not compact. 2And £ is not an imbedding.

Definition. A map f: X—>Y is said to be perfect if it is continuous, -

closed, and surjective, and if fml({yi) is compgct'for each yeY.

Said differently, a perfect map is a closed quotient map such that the inverse.
image of each point is compact. Perfect maps have many special properties.
For instance, if f: X~»Y 1is perfect and Y is compact, then X is compact;
the same result holds if "compact" is replaced by "paracompact." On the
other hand, many "niceness" properties of X (cuch as the Hausdorff condition,
regularity, local compactness, and second-countability, as well as the condition
of being paracompact Hausdorff) are preserved by perfect maps. (See Exercise 12
of §26, Exercise 7 of §31, and Exercise 8 of §41.)
The relation between perfect maps and proper maps is given in the following

theorem:

Theorem K. 3. Every perfect mép is proper. Conversely, let £ : X=2Y

be continuous and surjective. If f 1is proper, and if Y is compactly generated

Fausdorff, then f 1is perfect.

E{ggf. -Suppose f 1is a perfect map. Let C be a compact subspace
1(C). Given yeC, the set p_]’({Y})
can be covered by finitely many elements of (A. Because £ is a closed

map, there is a neighborhood W of y such that f_l(W) is covered by these

of Y; let A be an open cover of £

same elements of U4 . (See Exercise 6 of §31.) We can cover C by finitely

‘ , . . -1
many such neighborhoods W; then their inverse:images cover £ (C).
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Now we supose that £ 1is continuous, surjective, and proper, and that
. 1 . .
Y 1is compactly generated Hausdorff. The fact that £ (fy}) is compact is
immediate, since {y} is compact. The fact that f 1is closed follows

from Hheorem K.1. ]

It is an, interesting fact that if X 1is not compactly generated, it may
be given a (finer) topology that is compactly generated, and has exactly

the same collection of compact subspaces:

jheorem K.4. Let XT be a space with underlying set X and topology T.
There is a unique topology C on X, finer than T, such that:

(i) If D 1is a subset of X, and if D is compact in the topology
it inherits from XT’ or if D 1is compact in the topplogy it inherits

from XC' then these two topologies on D are the same.

(ii) XC is compactly generated.

P;oof. Let {C‘S : the family of compact subspaces of XT' In

view of Theorem G.4, there is a topology C on X, finer than T, such

that each space Cy is a subspace of XC and the topology of XC is coherent

with the subspaces Cq -
Suppose D 1is compact in the topology it inherits from XT' Then
in this topology, it is one of the spaces Cy i and as just noted, each space

Ce 1s a subspace of XC’

Now suppose D 1is compact in the topology it inherits from XC’

Because the identity map 1 : Xc---'>XT is continuous, D is compact in
the topology it inherits from XT' Then the previous paragraph applies.

The: space XC i compactly generated. For by definition, U is

oren in Xb if and only if UND 1is open in D for each compact subspace

D of XT' But D is a compact subspace of XT i{ and only if it is

a compact subspace of XC'

To prove uniqueness, let C' be any topology satisfying the conditions

of the theorem. Because XCI is compactly generated, a set U 1is open
in Xt, if and only if UAD 1is open in D for each compact subspace D
of XC" By (i), D 1is a compact subspace of Xé, if and only if it

is a compact subspace of XT' Therefore a set U 1is open in XC' if

and only if it is open in X.. jm}
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The class of compactly generated spaces is an interesting one to explore.
Like the class of normal spaces, it is not closed under the operations of taking
subspaces or products. We shall show that if J 15 uncountable, then ERJ
is not compactly generated. It follows that the subspace (O,l)J of
[O,l]J is not compactly generated, although [0,1]J is ccmpact and thus
compactly generated. It also follows that an arbitrary product of compactly
generated spaces need not be compactly generated. (The same is true for

finite products, but the required example is more complicated. See [D], p.249.)

Example 2. If J is uncountable, then 1RJ is not compactly generated.

(This example is adapted from [Wd].)

Given n>1, let An be . the set of all points x of zRJ such that

x, =0 for at most n values of £ , and xy, =n far all other values of .

We show that each set Ar' is closed in IRJ:

1

Tet p be a point of R not in A, If D é{o,n} for some IQ,
n B

let U be a neighborhood of p, not containing O or n; then ﬂ;l(U) is a
neighborhood of p disjoint from An' If P& %:O,n} for all ~<i, then
since p & An' there must be a finite set JO of indices containing more than
n elements such that p,=0 for o(éJO. Setting Ug = (-1,1) for «Le& T4
and U, =|R otherwise, we obtain a neighborhood 'lTUEL of p disjoint
from An. |

We now show that if - C is a compact subspace of [R°, then C intersects
only finitely many of the sets A_. Since C 1is compact, so is TT,(C);
therefore the latter is contained in some closed interval [_—n‘/\,n’,~ ] = Io
of {R. Then C 1lies in T[“IDL ; we show that TTIA -intersects only, finitely
many sets An' Since J 1s uncountable, the map o —> 1299 of J into Z.,

mist map some infinite subset JO of J to a single integer N. It follows
that A, does not intersect TYI‘,L if n>N. For if x bhelongs to A+ then
all but finitely many x, are greater than N, while if x Delongs to H-IJJ
infinitely many ]x&\must be less'than or equal to N.
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Iet T be the union of the sets An' We show that T is not closed
in {RJ, but that TMC 1is closed in C for every compact subspace C of IRJ.

It is easy to see that T 1is not closed in R°, for 0 1is a limit point

let J0

of T that is not in T. Given a basis element [ U « containing O,
be the (finite) set of indices o for which Uy #R. If weset x,=0
for a(,éJO and :>’<J‘= n otherwise (where n 1is the nunber of elements in JO),

we obtain a point x of T that lies in TU, .
It is also easy to see that TAC is closed in C if C is a compact

subspace of {RJ. For in this case TAC 1is the union of finitely many sets of

the form Annc; and since Ar‘ is closed in \RJ, the set Annc is closed in C.



