
18.783 Elliptic Curves Spring 2015
Lecture #8 03/03/2015

Andrew V. Sutherland

8 Point counting

8.1 Hasse’s Theorem

We are now ready to prove Hasse’s theorem.

Theorem 8.1 (Hasse). Let E/Fq be an elliptic curve over a finite field. Then

#E(Fq) = q + 1− t,

where t is the trace of the Frobenius endomorphism πE and |t| ≤ 2
√
q.

Proof. Let π(x, y) := (xq, yq) denote the Frobenius endomorphism πE of E. Then E(Fq)
is the subgroup of E(Fq) fixed by π, so E(Fq) = ker(π − 1). The endomorphism π − 1 is
separable, by Lemma 7.20, and we therefore have

#E(Fq) = # ker(π − 1) = deg(π − 1) = π̂ − 1(π − 1) = π̂π + 1− (π̂ + π) = q + 1− trπ.

It only remains to show that trπ
√| | ≤ 2 q.

Let r, s, and n be integers with n > 0 prime to q, let πn =

[
a b
c d

]
, and let t = trπ.

a b 1 0
deg(rπ − s) ≡n det

(
r
c d

− s[0 1

ra

[] [])
≡n det

− s rb
rc rd− s

]
≡n (ra

2

− s)(rd− s)− r2bc
≡n r (ad− bc)− rs(a+ d) + s2

≡n r2 detπn − rs trπn + s2

≡n r2q − rst+ s2

For any choice of r, s ∈ Z the degree of rπ − s is finite and we can pick n large enough so
that the congruence above is actually an equality over Z. Thus

deg(rπ − s) = r2q − rst+ s2

for any integers r and s. Dividing by s2 and noting that deg(r−πs) ≥ 0 yields the inequality

q
(r
s

)2
− t
(r

+
s

)
1 ≥ 0.

This holds for all nonzero rational numbers r . The rationals are dense in R, so we musts
have qx2− tx+ 1 ≥ 0 for all real numbers x. It follows that the discriminant t2− 4q cannot
be positive, and this yields the desired bound |t| ≤ 2

√
q.

1

Recall that for an odd prime p the Legendre symbol
(
a
p

)
satisfies(1

a
)

=

 if x2 = a has two solutions mod p,

0 if x2 = a has one solution mod p,
p

−1 if x2 = a has no solutions mod p.

We extend the Legendre symbol to finite fields Fq of odd characteristic by defining

(
a

Fq

) t

=

1 if x2 = a has wo solutions in Fq,
0 if x2 = a has one solution in Fq,
−1 if x2 = a has no solutions in Fq.

Note that in every case, 1 +
(
a
)

counts the solutions to x2 = a inFq
Fq. It follows that

x3 +Ax+B
#E(Fq) = 1 +

∑ (
1 +

x∈Fq

(
Fq

))
x3 +Ax+B

= q + 1 + .
q

x

∑
∈Fq

(
F

)
(1)

Hasse’s Theorem is equivalent to the statement that the sum in (1) has absolute value
bounded by 2

√
q. This is remarkable for a sum with q terms, almost all of which are ±1.

From a probabilistic point of view, one might expect that on average an O(
√
q) bound

should hold, but Hasse’s theorem guarantees that it always holds.
The bound in Hasse’s theorem is the best possible. Later in the course we will see how

to explicitly construct elliptic curves E/Fq with cardinalities matching every integer value
in the Hasse interval

H(q) := [q + 1− 2
√
q, q + 1 + 2

√
q] = [(

√
q − 1)2, (

√
q + 1)2]

when q is prime, and all but at most two integers when q is not prime.

8.2 Point counting

We now consider the problem of computing the cardinality of E(Fq); this is crucial to
cryptographic applications (as we shall see, it is quite important to know the cardinality of
the group one is working in). The most näıve approach one might take would be to evaluate
the curve equation y2 = x3 + Ax + B for E at every pair (x, y) ∈ F2

q , count the number
of solutions, and add 1 for the point at infinity. This takes O(q2M(log q)) time. Note that
the input to this problem is the pair of coefficients A,B ∈ Fq, which each have O(n) bits,
where n = log q. Thus in terms of the size of its input, this algorithm takes

O
(
exp(2n)M(n)

time, which is exponential in n.

)
A slightly less näıve approach is to precompute a table of quadratic residues in Fq so

that we can very quickly compute the extended Legendre symbol · . We can constructFq

such a table in O(qM(log q)) time, and we can then compute

()
x3 +Ax+B

#E(Fq) = q + 1 +
x

∑
∈Fq

(
Fq

)

2

in O(qM(log q)) time, yielding a total running time of

O(exp(n)M(n)).

But we still have not taken advantage of Hasse’s theorem; this tells us that #E(Fq)
must lie in the Hasse interval H(q), which has width 4

√
q.

8.3 Computing the order of a point

Before giving an algorithm to compute #E(Fq) using Hasse’s theorem, let us first consider
an easier problem: computing the order |P | of a single point P ∈ E(Fq). Since the order of
the group E(Fq) lies in H(q), we know that H(q) contains at least one integer M such that
MP = 0, and any such M is a multiple of |P |. To find such an M , we set M 2

0 =
√d(q−1) e,

compute M0P , and then generate the sequence of points

M0P, (M0 + 1)P, (M0 + 2)P, . . . ,MP = 0,

using repeated addition by P .1 Note that M is bounded by M0 + 4
√
q.

We then compute the prime factorization M = pe11 · · · peww (this is easy compared to the
time to find M), and compute the exact order of the point P using the following generic
algorithm.

Algorithm 8.2. Given an element P of an additive group and the prime factorization
M = pe11 · · · perr of an integer M for which MP = 0, compute the order of P as follows:

1. Let m = M = pe11 · · · p
er .k

2. For each prime pi, while pi|m and (m/pi)P = 0, replace m by m/pi.

3. Output m.

When this procedure is complete we know that mP = 0 and (m/p) = 0 for every prime p
dividing m; this implies that m = |P |. You will analyze the efficiency of this algorithm and
develop several improvements to it in Problem Set 4, but the number of group operations
is clearly polynomial in logM , which is all we need for the moment.

The time to compute |P | is thus dominated by the time to find a multiple of |P | in H(q).
This involves O(

√
q) operations in E(Fq), yielding a bit complexity of O(

√
q M(log q)) or

O
(
exp(n/2)M(n) .

We will shortly see how this can be further improved,

)
but first let’s consider how to use

our algorithm for computing |P | to compute #E(Fq). If we are lucky (and when q is large
we usually will be), the first multiple M of |P | we find in H(q) will actually be the only
multiple of |P | in H(q). If this happens, then we must have M = #E(Fq). Otherwise,
we might try our luck with a different point P . If we can find a combination of points for
which the least common multiple of their orders has a unique multiple in H(q), then we can
determine the group order.

Now this won’t always be possible. But before addressing that issue, let us consider the
question of how long it might take to compute the least common multiple of the orders of
all the points in E(Fq) — this a lot less than one might expect.

1Of course the initial scalar multiplication M0P should be performed using one of the generic exponen-
tiation algorithms we saw in Lecture 4, not by adding P to itself M0 times!

3

6

8.4 The group exponent

Definition 8.3. For a finite group G, the exponent of G, denoted λ(G), is defined by

λ(G) = lcm{|α| : α ∈ G}.

Note that λ(G) is a divisor of |G| and is divisible by the order of every element of G.
Thus λ(G) is the maximal possible order of an element of G, and when G is abelian this
maximum is achieved: there exists an element with order λ(G). To see this, note that the
structure theorem for finite abelian groups allows us to decompose G as

G ' Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nrZ,

with ni|ni+1 for 1 ≤ i < r. Thus λ(G) = nr, and any generator for Z/nrZ has order λ(G).
If we compute the least common multiple of a sufficiently large subset of a finite abelian

group G we will eventually obtain λ(G). If we pick points at random, how many points do
we expect to need in order to obtain λ(G)? The answer is surprisingly few: two points are
usually enough.

Theorem 8.4. Let G be a finite abelian group with exponent λ(G). Let α and β be uniformly
distributed random elements of G. Then

6
Pr[lcm(|α|, |β|) = λ(G)] > .

π2

Proof. We first reduce to the case that G is cyclic. As noted above, G ' Z/n1Z ⊕ Z/nrZ
with ni|ni+1 and λ(G) = nr. Let αr and βr be the projection of α and β to Z/nrZ. Then
lcm(|αr|, |βr|) = λ(G) implies lcm(|α|, |β|) = λ(G), and therefore

Pr[lcm(|α|, |β|) = λ(G)] ≥ Pr[lcm(|αr|, |βr|) = λ(G)].

eSo we now assume that G is cyclic with generator γ. Let pe11 · · · p k be the primek

factorization of λ(G). Let α = aγ, with 0 ≤ a < λ(G). Unless a is a multiple of pi, which
eoccurs with probability 1/pi, the order of α will be divisible by p i
i , and similarly for β.

These two probabilities are independent, thus with probability 1 − 1/p2i at least one of α
eand β has order divisible by p i
i . Call this event Ei. The events E1, . . . , Ek are independent,

esince we may write G as a direct sum of cyclic groups of prime-power orders pe11 , . . . , p
k , andk

the projections of α and β to each of these cyclic groups are uniformly and independently
distributed. Thus

Pr[lcm(|α|, |β|) = λ(G)] = Pr[E1 ∩ · · · ∩ Ek]

=
∏ ∞ −1

1 1 6
(1− p−2) >

∏
(1 =

n
) p

− p−2) =

p

(
n

∑
2

λ(G =1

)
= ,

ζ(2) π2
|

where ζ(s) =
∑
n−s is the Riemann zeta function.

Theorem 8.4 implies that if we generate random points P ∈ E(Fq) and accumulate the
least common multiple N of their orders, we should expect to obtain λ(E(Fq)) within O(1)
iterations. Regardless of when we obtain λ(E(Fq)), at every stage we know that N divides
#E(Fq), and if we ever find that N has a unique multiple M in the Hasse interval H(q),
then we know that #E(Fq) = M . Unfortunately this might not ever happen; it could be
that λ(E(Fq)) is smaller than 4

√
q, in which case it may well have more than one multiple

in H(q). To deal with this problem we need to consider the quadratic twist of E, which you
saw in Problem Set 1.

4

8.5 The quadratic twist of an elliptic curve

Suppose d is an element of Fq that is not a quadratic residue, so that d = 1. If weFq

˜consider the elliptic curve E defined by dy2 = x3 + Ax + B, then there
the form (x, y) on the curve if and only if x3 +Ax+B is not a quadratic

(
residue.

)
−

will be a point of
Thus

x3 +Ax+B˜#E(Fq) = q + 1−
x

∑
∈Fq

(
Fq

)
,

˜ ˜and it follows that if #E(Fq) = q+1− t, then #E(Fq) = q+1+ t. The curve E is called the
˜quadratic twist of E (by d). We can put the curve equation for E in standard Weierstrass

form by substituting x/d for x and y/d2 for y and then clearing denominators, yielding

y2 = x3 + d2Ax+ d3B.

Notice that it does not matter which non-residue d we choose. As you showed in Problem
˜ ˜Set 1, if d and d′ are any two non-residues in Fq, then the corresponding curves E and E′

˜are isomorphic over F , thus we refer to E as “the” quadratic twist of E.2q

Our interest in the quadratic twist of E lies in the fact that

#E(F ˜
q) + #E(Fq) = 2q + 2.

˜Thus if we can compute either #E(Fq) or #E(Fq), we can easily determine both values.

8.6 Mestre’s Theorem

As noted above, it is not necessarily the case that the exponent of E(Fp) has a unique
˜multiple in the Hasse interval. But if we also consider the quadratic twist E(Fp), then

a theorem of Mestre (published by Schoof in [4]) ensures that for all primes p > 229,
˜either λ(E(Fp)) or λ(E(Fp)) has a unique multiple in the Hasse interval H(p). There is a

generalization of this theorem that works for arbitrary prime powers q, see [2], but we will
restrict ourselves to the case where q = p is prime.

Theorem 8.5 (Mestre). Let p > 229 be prime, and let E/Fp be an elliptic curve with
˜ ˜quadratic twist E/Fp. Then either λ(E(Fp)) or λ(E(Fp) has a unique multiple in H(p).

˜Proof. Let E(Fp) ' Z/nZ × Z/NZ and E(Fp) ' Z/mZ × Z/MZ, where n|N and m|M .
Let t be the trace of the Frobenius endomorphism π of E. We have E[n] = E(Fp)[n], so π
fixes E[n] and the matrix πn is the identity. The matrix πn2 then has the form

πn2 =

[
1 + an bn
cn 1 + dn

]
,

for some a, b, c, d ∈ Z/n2Z. We then have

p ≡ detπn2 ≡ 1 + (a+ d)n mod n2,

t ≡ trπn2 ≡ 2 + (a+ d)n mod n2.

2This situation is specific to finite fields. Over Q for example, every elliptic curve has infinitely many
quadratic twists that are not isomorphic over Q (of course they are all isomorphic over Q).

5

˜Thus 4p − t2 ≡ 0 mod n2. The trace of Frobenius for E is t, and we similarly obtain
4p − t2 ≡ 0 mod m2. Thus lcm(m2, n2 2

−
) divides 4p − t . We also have t = un + 2 and

t = vm− 2, for some integers u and v, and subtracting these equations yields un− vm = 4.
This implies gcd(m,n) ≤ 4, and therefore gcd(m2, n2) ≤ 16. Thus

m2n2
lcm(m2, n2) 4p t2 4p. (2)

16
≤ ≤ − ≤

˜Suppose for the sake of contradiction that N = λ(E(Fp)) and M = λ(E(Fp)) both have
more than one multiple inH(p). Then M and N are both at most 4

√
p, so MN ≤ 16p. Since

mM and nN lie in H(p), they are both greater than (
√
p−1)2, hence mnMN ≥ (

√
p−1)4.

It follows that mn ≥ (
√
p− 1)4/(16p). Dividing by 4 and squaring both sides yields

m2n2 (
√
p− 1)8

16
≥ . (3)

4096p2

Combining (2) and (3), we have

16384p3 ≥ (
√
p− 1)8. (4)

This implies that if neither M nor N has a unique multiple in H(p), then p < 17413. An
exhaustive computer search for p < 17413 finds that in fact we must have p ≤ 229

8.7 Computing the group order with Mestre’s Theorem

We now give a complete algorithm to compute #E(Fp) using Mestre’s theorem, assuming
that p is a prime greater than 229 (if p is smaller than this we can easily count points using
one of our näıve algorithms); see [2] for an analogous algorithm that works for all prime
powers q > 49. As usual, H(p) = [(

√
p− 1)2, (

√
p+ 1)2] denotes the Hasse interval.

Algorithm 8.6. Given E/Fp with p > 229 prime, compute #E(Fp) as follows:

˜1. Compute a quadratic twist E of E using a randomly chosen non-residue d ∈ Fp.
˜2. Let E0 = E and E1 = E, let N0 = N1 = 1, and let i = 0.

3. While neither N0 nor N1 has a unique multiple in H(p):

a. Generate a random point P ∈ Ei(Fp).
b. Find an integer M ∈ H(p) such that MP = 0.

c. Factor M and compute |P | via Algorithm 8.2.

d. Replace Ni by lcm(Ni, |P |) and replace i by 1− i.

4. If N0 has a unique multiple M in H(p) then return M , otherwise return 2p+ 2−M ,
where M is the unique multiple of N1 in H(p).

It is clear that the output of the algorithm is correct, and it follows from Theorems 8.4
and 8.5 that the expected number of iterations of step 3 is O(1). Thus we have a Las Vegas
algorithm to compute #E(Fp). Its running time is dominated by the time to find M in
step 3b, and we obtain a total expected running time of O(

√
p M(log p)), or

O exp(n/2)M(n) .

We now show how this complexity can

(
be further impr

)
oved using the baby-steps giant-steps

method to compute M in step 3b.

6

8.8 Baby-steps giant-steps

The baby-steps giant-steps method is a generic group algorithm first introduced by Dan
Shanks in [5] and subsequently generalized by many authors. In the context of searching
H(q) for an integer M such that MP = 0, it works as follows.

Algorithm 8.7. Given P ∈ E(Fq) compute M ∈ H(q) such that MP = 0:

1. Pick integers r and s such that rs
√

≥ 4q.

2. Compute the set Sbaby = {0, P, 2P, . . . , (r − 1)P} of baby steps.

3. Compute the set Sgiant = {aP, (a+ r)P, (a+ 2r)P, . . . , (a+ (s− 1)r)P} of giant steps.

4. For each giant step Pgiant = (a + ir)P ∈ Sgiant, check whether Pgiant + Pbaby = 0 for
some baby step Pbaby = jP ∈ Sbaby. If so, output M = a+ ri+ j.

When the algorithm terminates, we necessarily have MP = 0, so M is a multiple of |P |.
Moreover, since every integer in H(q) can be written in the form a+ i+ jr with 0 ≤ i < r
and 0 ≤ j < s, the algorithm is guaranteed to find such an M .

To implement this algorithm efficiently, we typically store the baby steps Sbaby in a
lookup table (such as a hash table or binary tree) and as each giant step Pgiant is computed,
we lookup −Pgiant in this table. Alternatively, one may compute the sets Sbaby and Sgiant
in their entirety, sort both sets, and then efficiently search for a match. In both cases,
we assume that the points in Sbaby and Sgiant are uniquely represented. If we are using
projective coordinates (which makes the group operations more efficient), we must then
convert each point to affine form; the point (x : y : z) is put in the form (x/z : y/z : 1) by
computing the inverse of z in Fq. Done näıvely, this requires r + s field inversions, which
costs O((r + s)M(n) log n), but by using the method described in the next section, it is
possible to perform r + s field inversions in O((r + s)M(n)) time. Assuming this is done, if
we choose r ≈ s ≈ 2q1/4, then the running time of the algorithm above is O(q1/4M(log q)).
If we use the baby-steps giant-steps method to implement step 3b of Algorithm 8.6, we can
compute #E(Fq) in

O
(
exp(n/4)M(n)

expected time.

)

8.9 Batching field inversions

Suppose we are given a list of elements α1, . . . , αm ∈ Fq whose inverses we wish to compute.
The following algorithm accomplishes this using just one field inversion.

Algorithm 8.2 Given α1, . . . , αm ∈ Fq compute α−11 , . . . , α−1m as follows:

1. Set β0 = 1 and βi = βi−1αi for i from 1 to m. [βi = (α1 · · ·αi)]
2. Compute γm = β−1m . [γm = (α1 · · ·αm)−1]

3. For i from m down to 1:

a. Compute α−1i = βi 1γi. [αi
−1 = (α− 1 · · ·αi−1)(α1 · · ·αi)−1]

b. Compute γ 1
i]−1 = γiαi. [γi−1 = (α1 · · ·αi−1)−

7

The algorithm performs less than 3m multiplications in Fq and just one inversion in Fq.
Provided that m = Ω(log n), its running time is O(mM(n)).

In the context of Algorithm 8.1, if we are using a table of baby steps, we can compute
all of the baby steps using projective coordinates, convert them to affine form using just
one field inversion, and then construct the lookup table. For the giant steps we work in
batches of size m > log n, converting an entire batch to affine form using one field inversion
and then performing table lookups.

8.10 Optimizations

There are a wide range of optimizations to the baby-steps giant-steps method that have
been developed over the years. Here we mention just a few.

1. Optimize expected time: If we suppose that M is uniformly distributed over an
interval of width N , then we should use r ≈ N/2 baby steps so that the average
number of giant steps is s/2

√
≈ 2N/2 = N/

√
2.

2. Optimize for known distribution: In the

√
case of elliptic curves we know that M is

not uniformly distributed, it has a semi-circular distribution.3 This means we should
search from the middle outwards by taking our first giant step in the middle of the
interval (at q+1), and then alternating steps on either side. We should also choose the
number of baby steps to optimize the expected time, using the fact that the expected
distance between M and the middle of the interval is 8

3π

√
q.

3. Fast inverses: In groups such as E(Fq) where we can compute inverses very quickly
(the inverse of the point (x, y) is just (x,−y)), it makes sense to compute −Pgiant

at the same time we compute Pgiant and see whether either matches a baby step,
equivalently, whether Pgiant√±Pbaby = 0 holds. The number of baby steps should then
be decreased by a factor of 2 to keep the time for baby steps and giant steps roughly
equal.

4. Parity: We can easily determine the parity of #E(Fq) by checking whether it has a
point of order 2. If the curve equation is y2 = f(x) = x3 + Ax + B, then #E(Fq)
has even parity if and only if f(x) has a root in Fq (recall that points of order 2
have y-coordinate 0), which we can determine using a root-finding algorithm.4 Once
we know the parity of M we can modify Algorithm 8.1 to only use baby steps that
correspond to multiples of P with the same parity (so if M is odd we compute baby
steps P, 3P, 5P, . . . , adding 2P to each previous step), and use giant steps with even
parity. We should then reduce the number of baby steps by a factor of

√
2.

References

[1] William D. Banks and Igor E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics
on average for elliptic curves of small height , Israel J. Math. 173 (2009), pp. 253–277.

[2] John E. Cremona and Andrew V. Sutherland, On a theorem of Mestre and Schoof ,
Journal de Théorie des Nombres de Bordeaux 22 (2010), pp. 353–358.

3This follows from results showing that the Sato-Tate conjecture holds “on average”; see [1].
4In fact we only need to check whether gcd(xq − x, f(x)) has positive degree.

8

http://link.springer.com/article/10.1007%2Fs11856-009-0091-0
http://link.springer.com/article/10.1007%2Fs11856-009-0091-0
http://jtnb.cedram.org/jtnb-bin/item?id=JTNB_2010__22_2_353_0

[3] Joachim von zur Gathen and Jurgen¨ Garhard, Modern Computer Algebra, third edition,
Cambridge University Press, 2013.

[4] René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie
des Nombres de Bordeaux 7 (1995), pp. 219–254.

[5] Daniel Shanks, Class number, a theory of factorization and genera, in 1969 Number
Theory Institute (Proc. Symp. Pure Math., Vol. XX), Amer. Math. Soc., 1971, pp.
415–440.

[6] Joseph .H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathemat-
ics 106, second edition, Springer 2009.

[7] Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography , second
edition, Chapman and Hall/CRC, 2008.

9

http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139856065
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://www.ams.org/mathscinet-getitem?mr=316385
http://link.springer.com/book/10.1007%2F978-0-387-09494-6
http://www.crcnetbase.com/isbn/978-1-4200-7146-7

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Point counting
	Hasse's Theorem
	Point counting
	Computing the order of a point
	The group exponent
	The quadratic twist of an elliptic curve
	Mestre's Theorem
	Computing the group order with Mestre's Theorem
	Baby-steps giant-steps
	Batching field inversions
	Optimizations

