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7 Endomorphism rings

7.1 The n-torsion subgroup E[n]

Now that we know the degree of the multiplication-by-nmap, we can determine the structure
of E[n] as a finite abelian group. Recall that any finite abelian group G can be written as
a direct sum of cyclic groups of prime power order (unique up to ordering). Since #E[n]
always divides deg[n] = n2, to determine the structure of E[n] it suffices to determine the
structure of E[`e] for each prime power `e dividing n.

Theorem 7.1. Let E/k be an elliptic curve and let p = char(k). For each prime `:

Z/`eZ Z/`eZ if ` = p,
E[`e] '

{
⊕

Z/`eZ or {0} if ` = p.

Proof. We first suppose ` = p. The multiplication-by-`map [`] is then separable of degree `2,
so E[`] = ker[`] has order `2. Every nonzero element of E[`] has order `, so we must have

/`Z⊕ Z ¯E[`] ' Z /`Z. If E[`e] ' 〈P1〉 ⊗ · · · 〈Pr〉 with Pi ∈ E(k) of order `ei > 1, then

E[`] ' 〈`e1−1P 〉 · · · 〈`er−1P 〉 ' (Z/`Z)r,

thus r = 2 (this argument applies to any abelian group G: the `-rank r of G[`e] is the same
as the `-rank of G[`]). It follows that E[`e] ' Z/`eZ⊕ Z/`eZ, since E[`e] has order `2e and
contains no elements of order greater than `e.

We now suppose ` = p. Then [`] is inseparable and its kernel E[`] has order strictly less
than deg [`] = `2. Since E[`] is a `-group of order less than `2, it must be isomorphic to
either Z/`Z or {0}. In the latter case we clearly have E[`e] = {0

¯
} and the theorem holds,

so we now assume E[`] ' Z/`Z. If E[`] = 〈P 〉 with P ∈ E(k) a point of order `, then since
¯the isogeny [`] : E → E is surjective, there is a point Q ∈ E(k) for which `Q = P , and

the point Q then has order `2. Iterating this argument shows that E[`e] contains a point of
order `e, and by the argument above it has `-rank 1, so we must have E[`e] ' Z/`eZ.

The two possibilities for E[p] admitted by the theorem lead to the following definitions.
We do not need this terminology today, but it will be important in the weeks that follow.

Definition 7.2. Let E be an elliptic curve defined over a field of characteristic p > 0. If
E[p] ' Z/pZ then E is said to be ordinary, and if E[p] ' {0}, we say that E is supersingular.

Remark 7.3. The term “supersingular” is unrelated to the term “singular” (recall that an
elliptic curve is nonsingular by definition). Supersingular refers to the fact that such elliptic
curves are exceptional.

¯Corollary 7.4. Let E/k be an elliptic curve. Every finite subgroup of E(k) is the direct sum
of at most two cyclic groups, at most one of which has order divisible by the characteristic p
of k. In particular, when k = Fq is a finite field we have

E(Fq) ' Z/mZ⊕ Z/nZ

for some positive integers m,n with m|n and p - m.
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¯Proof. Let p be the characteristic of k, and let T be a finite subgroup of E(k) of order n. If
p - n, then T ⊆ E[n] ' Z/nZ⊕ Z/nZ can clearly be written as a sum of two cyclic groups.
Otherwise we may write T ' G ⊕H where H is the p-Sylow subgroup of T , and we have
G ⊆ E[m] ' Z/mZ⊕ Z/mZ, where m = |G| is prime to p and H has p-rank at most 1. It
follows that T can always be written as a sum of at most two cyclic groups, at most one of
which has order divisible by p.

Now that we know what the structure of E(Fq) looks like, our next goal is to bound its
cardinality. We will prove Hasse’s Theorem, which states that

#E(Fq) = q + 1− t,

where |t| ≤ 2
√
q. To do this we need to introduce the endomorphism ring of E.

7.2 Endomorphism rings

For any pair of elliptic curves E1/k and E2/k, the set hom(E1, E2) of homomorphisms
from E1 to E2 (defined over k) consists of all morphisms of curves E1 → E2 that are also

¯group homomorphisms E1(k) → ¯E2(k); since a morphism of curves is either surjective or
constant, this is just the set of all isogenies from E1 to E2 plus the zero morphism. For
any algebraic extension L/k, we write homL(E1, E2) for the homomorphisms from E1 to E2

that are defined over L.1

The set hom(E1, E2) forms an abelian group under addition, where the sum α + β is
defined by

(α+ β)(P ) := α(P ) + β(P ),

and the zero morphism is the identity. For any α ∈ hom(E1, E2) we have

α+ · · ·+ α = nα = [n] ◦ α,

where [n] is the multiplication-by-n map on E1. Provided α and n are nonzero, both [n]
and α are surjective, as is nα, thus nα = 0. It follows that hom(E1, E2) is torsion free (but
hom(E1, E2) = {0} is possible).

Definition 7.5. Let E/k be an elliptic curve. The endomorphism ring of E is the additive
group End(E) := hom(E,E) with multiplication defined by composition (so αβ = α ◦ β).

Warning 7.6. Some authors use End(E) to mean Endk̄(E) rather than Endk(E).

To verify that End(E) is in fact a ring, note that it has a multiplicative identity 1 = [1]
(the identity morphism), and for all α, β, γ ∈ End(E) and P ∈ ¯E(k) we have

((α+ β)γ)(P ) = (α+ β)(γ(P )) = α(γ(P )) + β(γ(P )) = (αγ + βγ)(P )

(γ(α+ β))(P ) = γ(α(P ) + β(P )) = γ(α(P )) + γ(β(P )) = (γα+ γβ)(P ),

where we used the fact that γ is a group homomorphism to get the second identity.
For every integer n the multiplication-by-n map [n] lies in End(E), and the map n 7→ [n]

defines an ring homomorphism Z → End(E), since [0] = 0, [1] = 1, [m] + [n] = [m + n]
and [m][n] = [mn]. As noted above, hom(E,E) is torsion free, so the homomorphism

1Technically speaking, these homomorphisms are defined on the base changes E1L and E2L of E1 and
E2 to L, so homL(E1, E2) is really shorthand for hom(E1L , E2L).
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n 7→ [n] is injective and may regard Z as a subring of End(E); we will thus feel free to
write n rather than [n] when it is convenient to do so. Note that this immediately implies
that the multiplication-by-n maps commute with every element of End(E). Indeed, for any
α ∈ End(E) and P ∈ ¯E(k) we have

(α ◦ [n])(P ) = α(nP ) = α(P + · · ·+ P ) = α(P ) + · · ·+ α(P ) = nα(P ) = ([n] ◦ α)(P ).

When k = Fq is a finite field, the q-power Frobenius endomorphism πE also commutes with
every element of End(E). This follows from the basic fact that for any rational function
r ∈ F q q

q(x1, . . . , xn) we have r(x1, . . . , xn)q = r(x1, . . . , xn), and we can apply this to the
rational maps defining any α ∈ End(E). Thus the subring Z[πE ] generated by πE lies in
the center of End(E).

Remark 7.7. It can happen that Z[πE ] = Z. For example, when E[p] = {0} and q = p2

the multiplication-by-p map [p] is purely inseparable and we must have [p] = π2 = πE .

For any nonzero α, β ∈ End(E), the product αβ = α ◦ β is surjective, since α and β are
both surjective; in particular, αβ is not the zero morphism. It follows that End(E) is has
no zero divisors, so the cancellation law holds (on both the left and the right, a fact we will
freely use in what follows).

7.3 The dual isogeny

In order to develop a deeper understanding of the structure of the endomorphism ring
End(E) we want to introduce the dual isogeny. But first let us record the following lemma.

Lemma 7.8. Let α = α1 ◦ α2 be an isogeny. Then degα = (degα1)(degα2).

Proof. It is clear that
#(kerα) = #(kerα1)#(kerα2),

since these are surjective group homomorphisms. It follows that degs α = (degs α1)(degs α2).
It is also clear that composing any isogeny with a purely inseparable isogeny of degree q
multiplies the degree by q: both u(xq)/v(xq) and (u(x)/v(x))q have degree q deg(u/v) as
rational functions (max degree of numerator and denominator). The lemma follows.

Corollary 7.9. For any isogeny α = α1 ◦ α2 we have degs α = (degs α1)(degs α2) and
degi α = (degi α1)(degi α2).

Proof. This follows from the fact that deg β = (degs β)(degi β) for any isogeny β.

Theorem 7.10. For any isogeny α : E1 → E2 there exists a unique isogeny α̂ : E2 → E1

for which α̂ ◦ α = [n], where n = degα.

Proof. We proceed by induction on the number of prime factors of n. If n = 1 then α is
an isomorphism and α̂ is just the inverse isomorphism. If α has prime degree ` different
from that characteristic of the field we are working in, then α is separable and α(E1[`]) is

¯a subgroup of E2(k) of cardinality `2/` = `. If we let α′ : E2 → E3 be the separable isogeny
with α(E[`]) as its kernel (applying Theorem 6.8), then the kernel of α′ ◦ α is E[`] and
since [n] : E1 → E1 is a separable isogeny with the same kernel, there is an isomorphism
ι : E3 → E1 for which ι ◦ α′ ◦ α = [n] and we may take α̂ = ι ◦ α.

If α has prime degree p equal to the characteristic of k, there are two cases.
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Case 1: If α is separable then we must have kerα = E[p] ' Z/pZ, and since deg[p] = p2

and degs[p] = p, we have [p] = π ◦ α′ for some separable isogeny α′ of degree p, where π
denotes the p-power Frobenius morphism (see Remark 6.5). Since α and α′ are separable
isogenies with the same kernel E[p], we can write α′ = ι ◦ α for some isomorphism ι; we
then have α̂ = π ◦ ι.
Case 2: If α is inseparable then we must have α = π. If E[p] = {0} then [p] is purely
inseparable of degree p2, so [p] = π2 and α̂ = π. If E[p] ' Z/pZ then [p] = α′ ◦ π for some
separable isogeny α′ of degree p and α̂ = α′.

If n is composite then we may decompose α into a sequence of isogenies of prime degree
(see Corollary 6.9). In particular we can write α = α1 ◦ α2, where α1, α2 have degrees
n1, n2 < n with n1n2 = n. We now claim that

α̂2 ◦ α̂1 ◦ α = [n],

and therefore α̂ = α̂2 ◦ α̂1. Indeed, we have

(α̂2 ◦ α̂1) ◦ α = α̂2 ◦ α̂1 ◦ α1 ◦ α2 = α̂2 ◦ [n1] ◦ α2 = α̂2 ◦ α2 ◦ [n1] = [n2] ◦ [n1] = [n],

¯where α2 ◦ [n1] = α2 ◦ [n1] because for any P ∈ E(k) we have

(α2◦[n1])(P ) = α2(n1P ) = α2(P+· · ·+P ) = α2(P )+· · ·+α2(P ) = n1α2(P ) = ([n1]◦α2)(P ),

since α is a group homomorphism (note that above we have used [n1] and [n2] to generically
denote multiplication maps on possibly different elliptic curves in the argument above).

Definition 7.11. The isogeny α̂ given by the theorem is the dual isogeny of α.

Remark 7.12. There is a general notion of a dual isogeny for abelian varieties of any
dimension. If we have an isogeny of abelian varieties α : A1 → A2 then the dual isogeny

ˆα̂ : A2 → Â1,

ˆ ˆis actually an isogeny between the dual abelian varieties A2 and A1. We won’t give a
definition of the dual abelian variety here, but the key point is that in general, abelian
varieties are not isomorphic to their duals. But abelian varieties of dimension one (elliptic
curves) are self-dual. This is yet another remarkable feature of elliptic curves.

As a matter of convenience we extend the notion of a dual isogeny to hom(E1, E2) and
End(E) by defining 0̂ = 0, and define deg 0 = 0, which we note is consistent with 0̂ ◦ 0 = [0]
and the fact that degrees are multiplicative.

Lemma 7.13. For an isogeny α of degree n we have deg α̂ = degα = n and

α ◦ α̂ = α̂ ◦ α = [n].

ˆThus α̂ = α. For any integer n the endomorphism [n] is self-dual.

Proof. The first statement follows from (deg α̂)(degα) = deg[n]. We now note that

(α ◦ α̂) ◦ α = α ◦ (α̂ ◦ α) = α ◦ [n] = [n] ◦ α,

and therefore α ◦ α̂ = [n]; since the isogenies involved are all surjective, it follows that we
can cancel α on the LHS and RHS to obtain α ◦ α̂ = [n]. The last statement follows from
the fact that [n] ◦ [n] = [n2] = [deg n].
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The one other fact we need about dual isogenies is the following.

Lemma 7.14. For any α, β ∈ ˆhom(E1, E2) we have α̂+ β = α̂+ β.

Proof. We will defer the proof of this lemma — the nicest proof uses the Weil pairing, which
we will see later in the course.

We now return to the setting of the endomorphism ring End(E) of an elliptic curve E/k.

Lemma 7.15. For any endomorphism α we have α+ α̂ = 1 + degα− deg(1− α).

Note that in the statement of this lemma, the integers degα, and deg(1 − α) on the
RHS are to be interpreted as elements of End(E) via the embedding n 7→ [n].

Proof. For any α ∈ End(E) (including α = 0) we have

deg(1− α) = 1̂− α(1− α) = (1̂− α̂)(1− α) = (1− α̂)(1− α) = 1− (α+ α̂) + deg(α),

and therefore α+ α̂ = 1 + degα− deg(1− α).

A key consequence of the lemma is that α + α̂ is always a multiplication-by-t map for
some t ∈ Z.

Definition 7.16. The trace of an endomorphism α is the integer trα := α+ α̂.

Note that for any α ∈ End(E) we have tr α̂ = trα, and deg α̂ = degα.

7.4 Endomorphism restrictions to E[n]

Let E be an elliptic curve over a field of charcteristic p (possibly p = 0). For any α ∈ End(E),
we may consider the restriction αn of α to the n-torsion subgroup E[n]. Since α is a group
homomorphism, it maps n-torsion points to n-torsion points, so αn is an endomorphism of
the abelian group E[n], which we may view as a (Z/nZ)-module.

When n is not divisible by p we have E[n] ' Z/nZ ⊕ Z/nZ, and we can pick a basis
(P1, P2) for E[n] as a (Z/nZ)-module. This just means that every element of E[n] can be
written uniquely as a (Z/nZ)-linear combination of P1 and P2 — if suffices to pick any
P1, P2 ∈
matrix

[ E[]n] that generate E[n] as an abelian group. We may represent αn as a 2 × 2
a b , where a, b, c, dc d ∈ Z/nZ are uniquely determined by

α(P1) = aP1 + bP2,

α(P2) = cP1 + dP2.

Note that this matrix representation depends on our choice of basis, but matrix invariants
such as the trace trαn and the determinant detαn are independent of this choice.

A standard technique for proving that two endomorphisms α and β are equal is to prove
that αn = βn for some sufficiently large n. If n2 is larger than the degree of α − β, then
αn = βn implies that the kernel of α− β is infinite and therefore α− β = 0 (since 0 is the
only endomorphism with infinite kernel) and α = β. To handle situations where we don’t
know the degree of α− β, or don’t even know exactly what β is (maybe we just know βn),
we need a more refined result.
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Lemma 7.17. Let α and β be endomorphisms of an elliptic curve E/k and let m be the
maximum of degα and deg β. Let n

√
≥ 2 m+ 1 be an integer that is prime to the charac-

teristic of k, and also prime to degα and deg β. If αn = βn then α = β.

Proof. We shall make use of the following fact that we won’t prove here. Let r(x) =
u(x)/v(x) be a rational function in k(x) with u ⊥ v and v monic. Suppose that we know
the value of r(xi) for N distinct values x1, . . . , xN for which v(xi) = 0. Provided that
N > 2 max{deg u,deg v}+ 1, the coefficients of u and v can be uniquely determined using
Cauchy interpolation; see [1, §5.8] for an efficient algorithm and a proof of its correctness.

u(x) s(x)Now let α(x, y) = , y be in standard form, with u normalize uv(x) t(x ⊥ v, and let us)

and v so that v is monic.

(
If we kno

)
w the value of α(P ) at 2 degα+2 affine points P 6∈ kerα

with distinct x-coordinates, then we can uniquely determine the coefficients of u and v.
¯Since at most 2 points P ∈ E(k) can share the same x-coordinate, it suffices to know α(P )

at 4 degα+ 4 affine points not in kerα.
For n ≥ 2

√
m+ 1 we have n2 ≥ 4m+ 4

√
m+ 1, and E[n] contains n2 − 1 ≥ 4 degα+ 4

affine points, none of which lie in kerα, since # kerα divides degα which is prime to n.
¯Thus knowing αn uniquely determines the x-coordinate of α(P ) for all P ∈ E(k). The same

¯argument applies to βn and β, hence α(P ) = ±β(P ) for all P ∈ E(k). The kernel of at
least one of α+ β and α− β is then infinite, hence α = ±β.

We have n2 > 4 degα ≥ 4, which implies that α(P ) cannot lie in E[2] for all P ∈ E[n]
(since #E[2] = 4). Therefore α(P ) = −α(P ) for some P ∈ E[n], and for this P we have
α(P ) = −α(P ) = −αn(P ) = −βn(P ) = −β(P ), so α = −β and we must have α = β.

Theorem 7.18. Let α be an endomorphism of an elliptic curve. Both α and its dual α̂ are
roots of the characteristic polynomial

λ2 − (trα)λ+ degα = 0.

Proof. α2 − (trα)α+ degα = α2 − (α+ α̂)α+ α̂α = 0, and similarly for α̂.

The following theorem provides the key connection between endomorphisms and their
restrictions to E[n].

Theorem 7.19. Let α be an endomorphism of an elliptic curve E/k and let n be a positive
integer prime to the characteristic of k. Then

trα ≡ trαn mod n and degα ≡ detαn mod n.

Proof. We will just prove the theorem for odd n prime to degα such that n ≥ 2
√

degα+ 1,
which is more than enough to prove Hasse’s theorem. The general proof relies on properties
of the Weil pairing that we will see later in the course.

We note that the theorem holds for α = 0, so we assume α = 0. Let n be as above and let
tn = trα mod n and dn = degα mod n. Since α and α̂ both satisfy λ2−(trα)λ+degα = 0,
both αn and α̂n must satisfy λ2 − tnλ+ dn = 0. It follo[ ws] that αn + α̂n and αnα̂n are the
scalar matrices tnI and dnI, respectively. Let αn = a b , and let δ .d n = detαc n The fact
that α̂nαn = dnI = 0 with dn prime to n implies that αn is invertible, and we have

α̂ = d α−1 dn
n n n =

detαn

[
d −b
−c a

]
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If we put ε := dn/detαn and substitute the above expression for α̂ into αn + α̂n = tnI, we
get [

a b
c d

]
+ ε

[
d −b
−c a

]
=

[
tn 0

.
0 tn

]
Thus a+ εd = tn, b− εb = 0, c− εc = 0, and d+ εa = tn. Unless a = d and b = c = 0, we
must have ε = 1, in which case dn = detαn and tn = a+ d = trαn as desired.

Otherwise αn is a scalar matrix. Let m be the unique integer with absolute value
less than n/2 such that αn = mn, where mn is the restriction of the multiplication-by-
m map to E[n]. We then have degm = m2 and n ≥ 2

√
degm + 1. Since we also have

n ≥ 2
√

degα+ 1 we must have α = m, by Lemma 7.17. But then α̂ = m̂ = m = α and we
have trα = 2m ≡ trmI ≡ trαn mod n and degα = m2 ≡ detmI ≡ detαn mod n.

7.5 Separable and inseparable endomorphisms

Recall that the Frobenius endomorphism πE is inseparable. In order to prove Hasse’s
theorem we will need to know that πE − 1 is actually separable. This follows from a much
more general result: adding a separable isogeny to an inseparable isogeny always yields a
separable isogeny.

Lemma 7.20. Let α and β be isogenies from E1 to E2, with α inseparable. Then α+ β is
inseparable if and only if β is inseparable.

Proof. If β is inseparable then we can write α = αsep ◦ πm and β = βsep ◦ πn, where π is
the p-power Frobenius map and m,n > 0. We then have

α+ β = α ◦ πm n
sep + βsep ◦ π = (αsep ◦ πm−1 + βsep ◦ πn−1) ◦ π,

which is inseparable (any composition involving an inseparable isogeny is inseparable).
If α+β is inseparable, then so is −(α+β), and α− (α+β) = β is a sum of inseparable

isogenies, which we have just shown is inseparable.

Remark 7.21. Since the composition of an inseperable isogeny with any isogeny is al-
ways inseparable, the lemma implies that the set of inseparable endomorphisms in the ring
End(E) form an ideal (provided we view 0 as inseparable, which we do).
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