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20 The modular equation

In the previous lecture we defined modular curves as quotients of the extended upper half
plane under the action of a congruence subgroup (a subgroup of SL2(Z) that contains Γ(N)
for some integer N ≥ 1). Of particular interest is the curve X0(N) := H∗/Γ0(N), where

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N .

The modular curve X0(N) plays a central role in the theory of

}
elliptic curves. From a

theoretical perspective, it lies at the heart of the modularity conjecture, a special case
of which was used to prove Fermat’s last theorem. From a practical perspective, it is a
key ingredient for algorithms that work with isogenies of elliptic curves over finite fields,
including the Schoof-Elkies-Atkin algorithm, an enhanced version of Schoof’s algorithm that
is now the standard algorithm for point-counting on elliptic curves over a finite fields.

There are two properties of X0(N) that make it so useful; the first, which we will prove
in this lecture, is that it has a canonical model over Z, which allows us to use it over any
field (including finite fields). The second is that it parameterizes isogenies between elliptic
curves; in particular, given the j-invariant of an elliptic curve E and an integer N , we can use
X0(N) to find the j-invariants of all elliptic curves related to E by a cyclic isogeny of degree
N (we will define exactly what this means in the next lecture). Both of these properties will
play a key role in our proof that the Hilbert class polynomial HD(X) has integer coefficients,
which implies that the j-invariants of elliptic curves E/C with complex multiplication are
algebraic integers, and has many other theoretical and practical applications.

In order to better understand modular curves, we introduce modular functions.

20.1 Modular functions

Modular functions are meromorphic functions on a modular curve. To make this statement
more precise, we first need to discuss q-expansions. The map q : H→ D defined by

q(τ) = e2πiτ = e−2π im τ (cos(2π re τ) + i sin(2π re τ))

bijectively maps each horizontal strip {τ : n ≤ im τ > n + 1} of the upper half plane H to
the punctured unit disk D− {0}. We also note that

lim q(τ) = 0.
im τ→∞

If f : H → C is a meromorphic function that satisfies f(τ + 1) = f(τ) for all τ ∈ H, then
we can write f in the form f(τ) = f∗(q(τ)), where f∗ is meromorphic on the punctured
unit disk. The q-series or q-exansion for f(τ) is the Laurent-series expansion of f∗ at 0
composed with q(τ):

+∞ +∞

f(τ) = f∗(q(τ)) =
n=

∑
anq(τ)n =

−∞ n=

∑
anq

n,
−∞
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where we typically just write q for q(τ) (as we will henceforth). If f∗ is meromorphic at 0
then this series has only finitely many nonzero an with n < 0 and we can write

∞

f(τ) =
n

∑
a n
nq ,

=n0

with an0 = 0. We then say that f is meromorphic at ∞, and call n0 the order of f at ∞;
note that n0 is also the order of f∗ at zero.

More generally, if f satisfies f(τ +N) = f(τ) for all τ ∈ H, then we can write f as

∞

f(τ) = f∗(q(τ)1/N ) =
n

∑
a N
nq
n/ , (1)

=−∞

and we say that f is meromorphic at ∞ if f∗ is meromorphic at 0.
If Γ is a congruence subgroup( of )level N , then for any Γ-invariant function f we have

f(τ +N) = f(τ) (consider γ = 1 N
0 1 ), so f can be written in the form (1), and the same

is true of the function f(γτ), for any fixed γ ∈ Γ.

Definition 20.1. Let Γ be a congruence subgroup and let f : H → C be a Γ-invariant
meromorphic function. The function f(τ) is said to be meromorphic at the cusps if for
every γ ∈ SL2(Z) the function f(γτ) is meromorphic at ∞.

In terms of the extended upper half-plane H∗, notice that for any γ ∈ SL2(Z),

lim γτ ∗
im →∞

∈ H
τ

\H = P1(Q).

Thus to say that f(γτ) is meromorphic at ∞ is the same thing as saying that f(τ) is
meromorphic at the cusp γ∞. Note that since f is Γ-invariant, in order to check whether
or not f is meromorphic at the cusps, it suffices to consider a set of cusp representatives
γ0∞, γ1∞, . . . , γk∞ for Γ; this set is finite because Γ has finite index in SL2(Z).

Definition 20.2. Let Γ be a congruence subgroup. A modular function for Γ is a meromor-
phic function g : H∗/Γ → C, equivalently, a Γ-invariant meromorphic function f : H → C
that is meromorphic at the cusps.

Sums, products, and quotients of modular functions Γ are also modular functions for Γ,
as are constant functions, thus the set of all modular functions for Γ is a field that is a
transcendental extension of C. Notice that if f(τ) is a modular function for a congruence
subgroup Γ, then f(τ) is also a modular function for every congruence subgroup Γ′ ⊆ Γ:
clearly f(τ) is Γ′-invariant since Γ′ ⊆ Γ, and the property of being meromorphic at the
cusps does not depend on Γ′.

20.2 Modular Functions for Γ(1)

We first consider the modular functions for Γ(1) = SL2(Z). In Lecture 16 we proved that the
j-function is SL2(Z)-invariant and holomorphic (hence meromorphic) on H. To show that
the j(τ) is a modular function for Γ(1) we just need to show that it is meromorphic at the
cusps. The cusps are all Γ(1)-equivalent, so it suffices to show that the j(τ) is meromorphic
at ∞, which we do by computing its q-expansion. We first note the following lemma, part
of which was used in Problem Set 8.
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Lemma 20.3. Let σk(n) =
∑

d n d
k, and let q = e2πiτ . We have|

4π4 ∞

g2(τ) =

(
1 + 240

3
n

∑
σ3(n)qn

=1

)
,

8π6 ∞

g3(τ) = 1
27

(
− 504 σ5(n)qn ,

n

∑
=1

)
∞

∆(τ) = g3
2(τ)− 27g2

3(τ) = (2π)12q
∑

(1 q
n=1

− n)24.

Proof. See Washington [4, pp. 273-274].

Corollary 20.4. With q = e2πiτ we have

1 ∑∞
j(τ) = + 744 + anq

n,
q

n=1

where the an are integers.

Proof. We have

g3 64 64
2(τ) = π12(1 + 240q +O(q2))3 = π12(1 + 720q +O(q2)),

27 27
64

∆(τ) = π12(33

27
· 26)q(1− 24q +O(q2)),

where each O(q2) denotes sums of higher order terms with integer coefficients. Thus

1728g3

j(τ) = 2(τ) 1
∞

= + 744 +
∆(τ) q

n

∑
anq

n,
=1

with an ∈ Z, as desired.

Remark 20.5. The proof of Corollary 20.4 explains the factor 1728 = 33 · 26 that appears
in the definition of the j-function: it is the least positive integer that ensures that the
q-expansion of j(τ) has integral coefficients.

The corollary implies that the j-function is a modular function for Γ(1), with a simple
pole at ∞. We proved in Theorem 18.5 that the j-function defines a holomorphic bijection
from Y (1) = H/Γ(1) to C. If we extend the domain of j to H∗ by defining j(∞) = ∞,
then the j-function defines an isomorphism from X(1) to the Riemann sphere S := P1(C)
that is holomorphic everywhere except for a simple pole at ∞. In fact, if we fix j(ρ) = 0,
j(i) = 1728, and j(∞) = ∞, then the j-function is uniquely determined by this property
(as noted above, fixing j(i) = 1728 ensures an integral q-expansion). It is for this reason
that the j-function is sometimes referred to as the modular function. Indeed, every modular
function for Γ(1) = SL2(Z) can be expressed in terms of the j-function.

Theorem 20.6. Every modular function for Γ(1) is a rational function of j(τ). Equiva-
lently, C(j) is the field of modular functions for Γ(1).

3



Proof. Let g : X(1) → C be a modular function for Γ(1). Then f = g ◦ j−1 : S → C is
meromorphic. By Lemma 20.7 below, this implies that f is a rational function. Therefore
g = f ◦ j ∈ C(j), as desired.

Lemma 20.7. If f : S → C is meromorphic, then f(z) is a rational function.

Proof. We may assume without loss of generality that f has no zeros or poles at ∞ (the
north pole of S). If this is not the case, we may replace f(z) by f(z + c) with an appro-
priate constant c ∈ C; in terms of P1(C) this corresponds to applying the linear fractional
transformation ( 1 c

0 1 ) which sends affine projective points (z : 1) to (z+ c : 1) and moves the
point (1 : 0) at infinity to (c : 0). Note that if f(z) is a rational function in z, so is f(z+ c).

Let {pi} be the set of poles of f(z), with orders mi := −ordpi(f), and let {qj} be the
set of zeros of f , with orders nj := ordqj (f). We claim that∑

mi =
i

∑
nj .

j

To see this, triangulate S so that all the poles and zeros of f(z) lie in the interior of a
triangle. It follows from Cauchy’s argument principle (Theorem 15.16) that the counter
integral ∫

f ′(x)
dz

∆ f(z)

about each triangle (oriented counter clockwise) is the difference between the number of
zeros and poles that f(z) in its interior. The sum of these integrals must be zero, since each
edge in the triangulation is traversed twice, once in each direction.

The function h : S → C defined by

h(z) = f(z) ·
∏

m∏ i
i(z − pi)
j(z − qj)nj

has no zeros or poles on S. It follows from Liouville’s theorem that h is a constant function,
and therefore f(z) is a rational function of z.

Corollary 20.8. Every modular function f(τ) for Γ(1) that is holomorphic on H is a
polynomial in j(τ).

Proof. Theorem 20.6 implies that f is a rational function in j, which we may write as∏
i(j(τ)− αi)

f(τ) = c ,
k(j(τ)− βk)

for some c, α 1
i, βj ∈ C. Now j : F → C is a bijection,

∏
so f(τ) must have a pole at j− (βk) ∈ F

for each βk. But f(τ) is holomorphic and therefore has no poles, so the set {βj} is empty
and f(τ) is a polynomial in j(τ).

20.2.1 Modular functions for Γ0(N)

We now consider modular functions for the congruence subgroup Γ0(N).

Theorem 20.9. The function jN (τ) := j(Nτ) is a modular function for Γ0(N).
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Proof. The function jN (τ) is obviously meromorphic (in fact holomorphic) on H, since j(τ)
is, and it is meromorphic at the cusps for the same reason (note that τ is a cusp if and only
if Nτ is). W(e just need to show that jN (τ) is Γ0(N)-invariant.

Let γ = a b Γc d

)
∈ 0(N). We have

N(aτ + b) aNτ + bN
jN (γτ) = j(Nγτ) = j

( )
= j

(
c

)
= j(γ′Nτ),

cτ + d Nτ + dN

where

γ′ =

(
a bN
c/N d

)
.

We now note that γ′ ∈ SL2(Z), since det(γ′) = det(γ) = 1 and c ≡ 0 (mod N) implies that
c/N is an integer. And j(τ) is SL2(Z)-invariant, so

jN (γτ) = j(γ′Nτ) = j(Nτ) = jN (τ),

thus jN (τ) is Γ0(N)-invariant.

Theorem 20.10. C(j, jN ) is the field of modular functions for Γ0(N).

Cox gives a very concrete proof of this result in [1, Thm. 11.9]; here we give a simpler,
but somewhat more abstract proof that is adapted from Milne [2, Thm. V.2.3].

Proof. Let {γ1, · · · , γm} ⊂ Γ(1) be a set of right coset representatives for Γ0(N) as a
subgroup of Γ(1) = SL2(Z); this means that the cosets Γ0(N)γ1, · · · ,Γ0(N)γm are distinct
and cover Γ(1). Without loss of generality, we may assume γ1 = I is the identity. Let KN

denote the field of modular functions for Γ0(N). By the previous theorem, jN ∈ KN , and
clearly j ∈ KN , since j is a modular function for Γ(1) and therefore for Γ0(N) ⊆ Γ(1). Thus
KN is an extension the field C(j, jN ), we just need to show that it is a trivial extension, i.e.
that [KN : C(j, jN )] = 1.

We first bound the degree of KN as an extension of the subfield C(j). Consider any
function f ∈ KN , and for 1 ≤ i ≤ m define fi(τ) := f(γiτ). Since f(τ) is Γ0(N)-invariant,
the function fi(τ) does not depend on the choice of the right-coset representative γi (for
any γi

′ ∈ Γ0(N)γi the functions f(γi
′τ) and f(γiτ) are the same). This implies that for

any γ ∈ Γ(1), the set of functions {f(γiγτ)} is equal to the set of functions {f(γiτ)},
since right-multiplication by γ permutes the right cosets {Γ0(N)γi}. Thus any symmetric
polynomial in the functions fi is Γ(1)-invariant, and therefore a rational function of j(τ),
by Theorem 20.6. Now let

P (Y ) = ( .

i∈{1

∏
Y − fi)

,··· ,m}

Then f = f1 is a root of P (since γ1 = I), and the coefficients of P (Y ) lie in C(j), since
they are all symmetric polynomials in the fi. Thus every f ∈ KN is the root of a monic
polynomial over C(j) of degree m; this implies that KN/C(j) is an algebraic extension,
and it is separable, since we are in characteristic zero. We claim that KN is also finitely
generated: if not we could pick functions g1, . . . , gm+1 ∈ KN such that

C(j) ( C(j)(g1) ( C(j)(g1, g2) ( · · · ( C(j)(g1, . . . , gm+1).

But then C(j)(g1, . . . , gm+1) is a finite separable extension of C(j) of degree at least m+ 1,
and the primitive element theorem implies it is generated by some function g whose minimal
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polynomial most have degree greater than m, which is a contradiction. The same argument
then shows that [KN : C(j)] ≤ m.

Now let F ∈ C(j)[Y ] be the minimal polynomial of f over C(j), which necessarily divides
P (Y ), but may have lower degree. We can regard F (j(τ), f(τ)) as a function of τ , which
must be the zero function. If we then replace τ by γiτ , for every τ ∈ H we have

F (j(γiτ), f(γiτ)) = F (j(τ), f(γiτ)) = F (j(τ), fi(τ)) = 0,

where we have used the fact that the j-function is Γ(1)-invariant. Thus the functions fi
all have the same minimal polynomial F as f , which implies that P = Fn for some n ≥ 1.
We have n = 1 if and only if the fi are distinct, and if this is the case then we must have
KN = C(j, f), since [KN : C(j)] ≤ m and [C(j, f) : C(j)] = m.

Now consider f = jN . By the argument above, to prove KN = C(j, jN ) we just need to
show that the functions fi(τ) = jN (γiτ) = j(Nγiτ) are distinct functions of τ as i varies.

Suppose not. Then j(Nγiτ) = j(Nγkτ) for some i = k and τ ∈ H that we can choose
to have stabilizer ±I (distinct meromorphic functions cannot agree on any open set where
both are defined so we can easily avoid Γ(1)-translates of eπi and e2π/3). Fix a fundamental
region F for H/Γ(1) and pick α, β ∈ Γ(1) so that αNγiτ and βNγjτ lie in F . The j-function
is injective on F , so

j(αNγiτ) = j(βNγkτ) ⇐⇒ αNγiτ = ±βNγkτ ⇐⇒ αNγi = ±βNγk,

where we may view N as(the matrix N 0 , since Nτ = Nτ+0
0 1 .0τ+1

Now let γ = α−1β = a b . We havec d

( ))
(
N 0
0 1

)
γi = ±

(
a b
c d

)(
N 0
0 1

)
γk,

and therefore

1
γiγ
−1 =k ±

(
/N 0
0 1

)(
a b
c d

)(
N 0 a b/N

= .
0 1

)
±
(
cN d

)
We have γiγ

−1, so b/N is an integer, and cNk ≡ 0 mod N , so in fact γiγ
−1
k ∈ Γ0(N).

But then γi and γk lie in the same right coset of Γ0(N), which is a contradiction.

20.3 The modular polynomial

Definition 20.11. The modular polynomial ΦN is the minimal polynomial of jN over C(j).

As in the proof of Theorem 20.10, we may write ΦN ∈ C(j)[Y ] as

m

ΦN (Y ) =
∏

(Y − jN (γiτ)),
i=1

where the γi are right coset representatives for Γ0(N). The coefficients of ΦN (Y ) are
symmetric polynomials in jN (γiτ), so, as in the proof of Theorem 20.10 they are Γ(1)-
invariant; and they are holomorphic on H, so they are polynomials in j, by Corollary 20.8.
Thus ΦN ∈ C[j, Y ]. If we replace every occurrence of j in ΦN with a new variable X we
obtain an element of C[X,Y ] that we write as ΦN (X,Y ).
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Our next task is to prove that the coefficients of ΦN (X,Y ) are actually integers, not
just complex numbers. To simplify the presentation, we will only prove this for prime N ,
which is all that is needed in many practical applications (such as the SEA algorithm), and
suffices to prove the main theorem of complex multiplication.1

We begin by fixing a specific set of right coset representatives for Γ0(N).

Lemma 20.12. For prime N we can write the right cosets of Γ0(N) in Γ(1) as{
Γ0(N)

}
∪
{

Γ0(N)ST k : 0 ≤ k < N
}
,

where S = 0 −1 and T = 1 1 .1 0 0 1

Proof. We

(
first sho

)
w that

(
the

)
union of these cosets is Γ(1). Let γ =

(
A B Γ. IfC D ∈

C ≡ 0 mod N , then γ ∈ Γ0(N) lies in the first coset above. Otherwise, we note that

)

ST k =

(
0 −1 k 1

and (ST k)−1 = ,
1 k

) (
−1 0

)
and for C 6≡ 0 mod N , we may pick k such that kC ≡ D mod N , since N is prime. Then

A
γ0 := γ(S k kA B

T )−1 =

(
−

kC −D C

)
∈ Γ0(N),

and γ = γ0(ST k) ∈ Γ0(N)ST k.
We now show the cosets are distinct. Suppose not. Then there must exist γ1, γ2 ∈ Γ0(N)

such that either (a) γ1 =( γ2)ST k for some 0 ≤ k < N , or (b) γ j k
1ST = γ2ST with

0 ≤ j < k < N . Let γ2 = a b . In case (a) we havec d

γ1 =

(
a b
c d

)(
0 −1
1 k

)
=

(
b bk − a

(
d dk c

)
∈ Γ− 0 N),

which implies d ≡ 0 mod N . But then det γ2 = ad − bc ≡ 0 mod N , a contradiction. In
case (b), with m = k − j we have

γ1 = γ2ST
mS−1 =

(
a b

)(
0 −1

c d 1 m

)(
0 1
−1 0

)
=

(
−a− bm −b

.
c

∈ Γ (N)− − dm −

)
0d

Thus −c − dm ≡ 0 mod N , and since c ≡ 0 mod N and m 6≡ 0 mod N , we must have
d ≡ 0 mod N , which again implies det γ2 = ad− bc ≡ 0 mod N , a contradiction.

Theorem 20.13. ΦN ∈ Z[X,Y ].

Proof (for N prime). Let γk = ST k. By Lemma 20.12 we have

ΦN (Y ) =
(
Y − jN (τ)

)N
k

∏−1

=0

(
Y − jN (γkτ)

)
.

Let f(τ) be a coefficient of ΦN (Y ). Then f(τ) is holomorphic function on H, since j(τ) is,
f(τ) is Γ(1)-invariant, since, as in the proof of Theorem 20.10, it is symmetric polynomial

1The proof for composite N is essentially the same, but explicitly writing down a set of right coset
representatives γi and computing the q-expansions of the functions jN (γiτ) is more complicated.
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in jN (τ) and the functions jN (γkτ), corresponding to a set of right coset representatives
for Γ0(N), and f(τ) is meromorphic at the cusps, since it is a polynomial in functions that
are meromorphic at the cusps. Thus f(τ) is a modular function for Γ(1) and therefore
a polynomial in j(τ), by Corollary 20.8. By Lemma 20.14 below, if we can show that
the q-expansion of f(τ) has integer coefficients, then it will follow that f(τ) is an integer
polynomial in j(τ) and therefore ΦN ∈ Z[X,Y ].

We first show that f(τ) has have rational coefficients. We have

1
∞

jN (τ) = j(Nτ) = + 744 +
qN

n

∑
anq

nN ,
=1

where the an are integers, thus jN ∈ Z((q)).
For jN (γkτ), we have

jN (γkτ) = j(Nγkτ) = j
((

N 0
0 1

)
ST kτ

= j

)
(
S
(

1 0
0 N

) (
1 k
0 1

)
τ
) τ

= j
((

1 0
0 N

) (
1 k
0 1

)
τ
)

= j

(
+ k

N

)
,

2πi

where we are able to drop the S because j(τ) is Γ-invariant. If we let ζN = e N , then

τ + k ( τ+k ) k

q

( )
= e2πi = e2πi q1/N = ζk q1/N

N N

N N ,

and
ζ−k

j (γ τ) = N +
∑∞

a ζknqn/NN k n N ,
q1/N

n=0

thus jN (γkτ) ∈ Q(ζN )((q1/N )).
The Galois group Gal(Q(ζN )/Q) on the coefficients of the q-expansions of each jN (γkτ)

induces a permutation of the set {jN (γkτ)} and fixes jN (τ). It follows that the coefficients
of the q-expansion of f , which is a symmetric polynomial in these functions, are fixed by
Gal(Q(ζN ))/Q) and therefore lie in Q; thus f ∈ Q((q1/N )).

We now note that the coefficients of the q-expansion of f(τ) are algebraic integers, since
the coefficients of the q-expansions of jN (τ) and the jN (γk) are algebraic integers, as is any
polynomial combination of them. This implies f(τ) ∈ Z((q1/N )).

Finally, we recall that f(τ) is a polynomial in j(τ), so its q-expansion can have only
integral powers of q; therefore f(τ) ∈ Z((q)), as desired.

Lemma 20.14 (Hasse q-expansion principal). Let f(τ) be a modular function for Γ(1)
that is holomorphic on H and whose q-expansion has coefficients that lie in an additive
subgroup A of C. Then f(τ) = P (j(τ)), for some polynomial P ∈ A[X].

Proof. By Corollary 20.8, we know that f(τ) = P (j(τ)) for some P ∈ C[X], we just need
to show that P ∈ A[X]. We proceed by induction on d = degP . The lemma clearly
holds for d = 0, so assume d > 0. The q-expansion of the j-function begins with q−1, so
the q-expansion of f(τ) must have the form

∑∞
n= d anq

n, with a A− n ∈ and a−d = 0. Let

P1(X) = P (X)− a dX
d, and let f1(τ) = P1(j(τ)) = f(τ)− a dj(τ)d. The q-expansion of− −

the function f1(τ) has coefficients in A, and by the inductive hypothesis, so does P1(X),
and therefore P (X) = P1(X) + a−dX

d also has coefficients in A.
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