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19 Riemann surfaces and modular curves

Let O be an order in an imaginary quadratic field K and let D = disc(O). In the previous
lecture we defined the Hilbert class polynomial

HD(X) =

j(E)∈

∏
(X − j(E))

Ell (C)O

where Ell (C) := {j(E) : E/C has End(E) = ,O O} and claimed that HD ∈ K[x] (in fact
HD ∈ Z[x]), which implies that every elliptic curve E/C with complex multiplication is
actually defined over a number field K(j(E)), where j(E) is an algebraic integer.

In order to prove this, and in order to develop efficient algorithms for explicitly com-
puting HD(X), we need to temporarily divert our attention to the study of modular curves.
These curves, and the modular functions that are defined on them, are a major topic in
their own right, one to which entire courses (and even research careers) are devoted. We
shall only scratch the surface of this subject, focusing on the specific results that we need.
Our presentation is adapted from [1, V.1] and [2, I.2].

19.1 The modular curves X (1) and Y (1)

Recall the modular group Γ = SL2(Z), which acts on the upper half plane H via linear
fractional transformations. The quotient H/Γ (the Γ-orbits of H) is known as the modular
curve Y (1), whose points may be identified with points in the fundamental region

F = {z ∈ H : re(z) ∈ [−1/2, 1/2) and |z| ≥ 1, with |z| > 1 if re(z) > 0}.

You may be wondering why we call Y (1) a curve. Recall from Theorem 18.5 that the j-
function gives a holomorphic bijection from F to C, and we shall prove that in fact Y (1) is
isomorphic, as a complex manifold, to the complex plane C, which we may view as an affine
curve: let f(X,Y ) = Y and note that the zero locus of f is just {(X, 0) : X ∈ C} ' C.

The fundamental region F is not a compact subset of H, since it is unbounded along the
positive imaginary axis. To remedy this deficiency, we compactify it by adjoining a point
at infinity to H and including it in F . But we also want SL2(Z) to act on our extended
upper half plane. Given that

aτ + b a
lim = ,

im τ→∞ cτ + d c

we need to include the set of rational numbers in our extended upper half plane in order
for Γ to act continuously. So let

H∗ = H ∪Q ∪ {∞} = H ∪ P1(Q),

and let Γ act on P1(Q) via(
a b
c d

)
(x : y) = (ax+ by : cx+ dy).
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The points in H∗\H = P1(Q) are called cusps; as shown in Problem Set 8, the cusps are
all Γ-equivalent. Thus we may extend our fundamental region F for H to a fundamental
region F∗ for H∗ by including the cusp at infinity: the point ∞ = (1 : 0) ∈ P1(Q), which
we may view as lying infinitely far up the positive imaginary axis.

We can now define the modular curve X(1) = H∗/Γ, which contains all the points
in Y (1), plus the cusp at infinity. This is a projective curve, in fact it is the projective
closure of Y (1). It is also a compact Riemann surface, a connected complex manifold of
dimension 1. Before stating precisely what this means, our first goal is to prove that X(1)
is a compact Hausdorff space.

To give the extended upper half plane H∗ a topology, we begin with the usual (open)
neighborhoods about points τ ∈ H (all open disks about τ that lie in H). For cusps τ ∈ Q
we take the union of {τ} with any open disk in H tangent to τ to be a neighborhood of τ .
For the cusp at infinity, any set of the form {∞} ∪ {τ ∈ H : im τ > r} with r > 0 is a
neighborhood of ∞.

With this topology it is clear that H∗ is a Hausdorff space (any two points can be
separated by neighborhoods). It does not immediately follow that X(1) = H∗/Γ is a
Hausdorff space; a quotient of a Hausdorff space need not be Hausdorff. To prove that
X(1) is Hausdorff we first derive two lemmas that will be useful in what follows.

Lemma 19.1. For any compact sets A and B in H the set S = {γ : γA ∩B = ∅} is finite.

Proof. Let m = min{im τ : τ ∈ A} and M = max{| re τ | : τ ∈ A}, and define

r = max{im τA/ im τB : τA ∈ A, τB ∈ B}.

Recall that for any γ =
(
a b
)
∈ Γ we have im γτ = im τ/|cτ + d|2. If γ sends τc d A ∈ A to

τB ∈ B, then |cτA + d|2 = im τA/ im τB ≤ r. This implies (cm)2 ≤ r and (cM + d)2 ≤ r,
which gives upp( er bounds on |c| and |d| for any γ

a b
) ∈ S. Thus the number of pairs (c, d)

arising among ∈ S is finite. Let us now fix one such pair and definec d

s = max{|τB||cτA + d| : τA ∈ A, τB ∈ B}.

For any γ =
(
a b
)
∈ Γ we have +d |γτ | = |aτ b|/|cτ + d|. If γ sends τA ∈ A to τc B ∈ B, then

|aτA + b| = |τB||cτA +d| ≤ s. As above, th(is giv) es upper bounds on a| and |b|, proving that
the number of pairs (a, b) arising among a b

|
∈ S is finite. So S is finite.c d

Lemma 19.2. For τ1, τ2 ∈ H∗ there exist neighborhoods U1 of τ1 and U2 of τ2 such that

γU1 ∩ U2 = ∅ ⇐⇒ γτ1 = τ2,

for all γ ∈ Γ. In particular, every τ ∈ H∗ has a neighborhood containing no points γτ = τ .

Proof. We first note that if γτ1 = τ2, then γU1 ∩U2 = ∅ for all neighborhoods U1 of τ1 and
U2 of τ2, so we only need to prove the forward implication in the statement of the lemma.

We first consider τ1, τ2 ∈ H, with compact neighborhoods C1 and C2, respectively,
and let S = {γ : γC1 ∩ C2 = ∅ and γτ1 = τ2}. If S is empty then let U1 ⊂ C1 be a
neighborhood of τ1 and let U2 ⊂ C2 be a neighborhood of τ2. Otherwise, pick γ ∈ S,
pick a neighborhood U1 of τ1 such that τ2 6∈ γU1, pick a neighborhood U2 of τ2 such that
γU1 ∩ U2 = ∅, and replace C1 and C2 by the closures of U1 an U2, respectively, yielding a
smaller set S. Note that the existence of U1 and U2 is guaranteed by the continuity of the
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function f(τ) = γτ = (aτ + b)/(cτ + d). By Lemma 19.1, S is finite, so we eventually have
S = ∅ and neighborhoods U1 and U2 that satisfy the lemma.

We now consider τ1 ∈ H and τ2 =∞. Let U1 be a neighborhood of τ1 with U1 ⊂ H. The
set {|cτ + d| : τ ∈ U1, c, d ∈ Z not b(oth)0} is bounded below, and {im γτ : γ ∈ Γ, τ ∈ U1 is

a

}
bounded above, say by r, since im b τ = im τ/|cτ + d|2. If we let U = τ : im τ > r bec d 2 { }
our neighborhood of τ2 = ∞, then γU1 ∩ U2 = ∅ for all γ ∈ Γ and the lemma holds. This
argument extends to all the cusps in H∗, since every cusp is Γ-equivalent to ∞, and we can
easily reverse the roles of τ1 and τ2, since if γU1 ∩ U 1

2 = ∅ then U1 ∩ γ− U2 = ∅.
Finally, if τ1 = τ2 =∞ we let U1 = U2 = τ H : im τ > 1 : for im τ > 1 either

im γτ = im τ , in which case γ = ( 1

{ ∈ } ∪ {∞}
0 1
∗ ) fixes ∞, or im γτ = im τ/|cτ + d|2 < 1.

Theorem 19.3. X(1) is a connected compact Hausdorff space.

Proof. It is clear that H is connected, hence its closure H∗ is connected, and the quotient
of a connected space is connected. So X(1) is connected.

To show that X(1) is compact, we show that every open cover has a finite subcover.
Let {Ui} be an open cover of X(1) and let π : H∗ → X(1) be the quotient map. Then
{π−1(Ui)} is an open cover of H∗ and it contains an open set V0 containing the point ∞.
Let {V1, . . . , Vn} be a finite subset of {π−1(Ui)} covering the compact set F −V0 (note that
V0 contains a neighborhood {z : im z > r} of ∞). Then {V0, . . . , Vn} is a finite cover of F∗,
and {π(V0), . . . , π(Vn)} is a finite subcover of {Ui}.

To show that X(1) is Hausdorff, let x1, x2 ∈ X(1) be distinct, and choose τ1, τ2 so that
π(τ1) = x1 and π(τ2) = x2. Then τ2 = γτ1 for all γ ∈ Γ (since x1 = x2), so by Lemma 19.2,
there are neighborhoods U1 and U2 of τ1 and τ2 respectively for which γU1 ∩ U2 = ∅ for all
γ ∈ Γ. Thus π(U1) and π(U2) are disjoint neighborhoods of x1 and x2.

We note that Lemmas 19.1 and 19.2 and Thoerem 19.3 all hold if we replace Γ by
any finite-index subgroup of Γ; the proofs are essentially the same, the only change is an
additional argument in the proof of Lemma 19.2 to handle inequivalent cusps.

19.2 Riemann surfaces

Definition 19.4. A complex structure on a topological space X is an open cover {Ui}
of X together with a set of compatible homeomorphisms1 ψi : Ui → C with open images.
Homeomorphisms ψi and ψj are compatible if the transition map

ψj ◦ ψ−1i : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj)

is holomorphic (vacuously true whenever Ui ∩ Uj = ∅).

The homeomorphisms ψi are called local parameters, or charts, and the set {ψi} is called
an atlas. Each of the charts ψi allows us to view a local piece of X as a region of the complex
plane; the transition maps allow us to move smoothly from one region to another. Note
that the transition maps are necessarily homeomorphisms; the requirement that they also
be holomorphic is the key feature that differentiates complex manifolds from real manifolds.

1Recall that a homeomorphism is a bicontinuous function, a continuous function with a continuous inverse.
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Definition 19.5. A Riemann surface is a connected Hausdorff space with a complex struc-
ture (equivalently, a connected complex manifold of dimension one).2

Example 19.6. The torus C/L corresponding to an elliptic curve E/C is a Riemann
surface. To give C/L a complex structure let π : C → C/L be the quotient map, let r > 0
be less than half the length of the shortest vector in L, and for each z ∈ C in a fundamental
region for L, let Uz ⊆ C be the open disc or radius r centered at z. The restriction of π
to each Uz is injective (by our choice of r) and defines a homeomorphism. We may thus
take {π(U )} as our open cover and the inverse maps π−1z : π(Uz)→ Uz as our charts. The
transition maps are all the identity map, hence holomorphic.

It is clear that C/L is a connected Hausdorff space, hence a Riemann surface, in fact
a compact Riemann surface. We can compute its genus by triangulating a fundamental
parallelogram and computing its Euler characteristic. Recall Euler’s formula

V − E + F = 2− 2g,

where V counts vertices, E counts edges, F counts faces, and g is the genus. If L = [ω1, ω2],
we may triangulate the parallelogram F0 by drawing a diagonal from ω1 to ω2. We then
have V = 1 (every lattice point is equivalent to 0), E = 3 (edges on the opposite side of the
parallelogram are equivalent, so 2 edges on the border plus the diagonal), and F = 2 (two
triangles, one on each side of the diagonal). We thus have

1− 3 + 2 = 2− 2g,

and g = 1, as expected.

In order to show that X(1) is a Riemann surface, we need to give it a complex structure.
The only difficulty that arises when doing so occurs at points in H∗ that possess extra
symmetries under the action of Γ. We may restrict our attention to the fundamental
region F∗, and in this region there are only three points that we need to worry about, the
points i, ρ := e2πi/3, and ∞. We require the following lemma.

Lemma 19.7. For τ ∈ F∗, let G denote the stabilizer of τ in Γ = SL (Z). Let S =
(
0 −1

τ 2 1 0
and T = ( 1 1

0 1 ). Then

)
{±I} ' Z/2Z if τ ∈/ {i, ρ,∞};〈S〉 if

Gτ =
' Z/4Z τ = i;〈ST 〉 ' Z/6Z if τ = ρ〈±T 〉 ' Z if τ =∞.

Proof. See Problem Set 8, or stare at Figure 1 and note −I acts trivially and T∞ =∞.

2Strictly speaking, a Riemann surface is also required to be second-countable, meaning that it admits a
countable basis of open sets. This is a technical condition that is easily satisfied by all the Riemann surfaces
H∗/G that we shall consider (to get a countable basis for H take open discs of rational radii centered at
points with rational real and imaginary parts, for example).

4

4



T−1 I T

(ST )2 S TS

STS ST (TS)2 TST

i

i

i

i

i

i

i i i i

ρ ρ ρ
ρ ρ ρ

ρ

ρ

ρ

ρ

∞ ∞ ∞

∞∞ ∞∞∞ ∞∞

-3/2 -1 -1/2 0 1/2 1 3/2

Figure 1: H∗/Γ

19.3 The modular curve X(1) as a Riemann surface

We now put a complex structure on X(1). Let π : H∗ → X(1) be the quotient map, and
for each point x ∈ X(1) let τx be the unique point in the fundamental region F∗ for which
π(τx) = x, and let Gx = Gτx be the stabilizer of τx. For each τx ∈ F∗, we can pick a
neighborhood Ux such that γUx ∩ Ux = ∅ for all γ 6∈ Gx, by Lemma 19.2. The sets π(Ux)
form an open cover of X(1). For x 6=∞, we can map Ux to an open subset of the unit disk
D = {z ∈ C : |z| < 1} via the homeomorphism δx : H→ D defined by

τ x
δx( ) :=

− τ
τ

τ −
. (1)

τx

To visualize the map δx, note that it sends τx to the origin, and if we extend its domain
to , it maps the real line to the unit circle minus the point 1 and sends ∞ to 1. Note that
im τ > 0 and im τx < 0, so the denominator is nonzero for all τ ∈ H.

To define ψx we need to map π(Ux) into D. For τx = i, ρ,∞ we have Gx = {±1}, which
fixes every point in Ux, not just τx. In this case the restriction of π to Ux is injective, we
have Ux/Γ = Ux/Gx = Ux, so we can simply define ψx := δ 1

x ◦ π− .
When |Gx| > 2, the restriction of π to Ux is no longer injective (it is at τx, but not at

points near τx), so we cannot use ψx = δx ◦ π−1. We instead define ψx(z) = δx(π−1(z))n,
where n = |Gx|/2 is the size of the Γ-orbits in Ux\{τx}. Note that when Gx = {±1} we
have n = 1 and this is the same as defining ψx = δx ◦ π−1. To prove that this actually
works, we will need the following lemma.

Lemma 19.8. Let τx ∈ H, with δx(τ) as in (1), and let ϕ : H → H be a holomorphic
function fixing τx whose n-fold composition with itself is the identity, with n minimal. Then
for some primitive nth root of unity ζ, we have δx(ϕ(τ)) = ζδx(τ) for all τ ∈ H.

H

6

5



Proof. The map f = δx ◦ ϕ ◦ δ−1x is a holomorphic bijection (conformal map) from D to D
that fixes 0. Every such function is a rotation f(z) = ζz with |ζ| = 1, by [3, Cor. 8.2.3].
Since the n-fold composition of f with itself is the identity map, with n minimal, ζ must
be a primitive nth root of unity.

What about x = ∞? We have G = 〈±T 〉, so the intersection of the Γ-orbit of any∞
point τ ∈ U \{∞} with U is the set {τ +m : m ∈ Z w∞ }. We no define∞

δ (z) :=∞

{
e2πiz if z =∞,
0 if z =∞,

and let ψ = δ ◦ π−1. Then δ (τ +m) = δ (τ) for all τ∞ ∞ ∞ ∞ ∈ U∞\{∞} and m ∈ Z.

The following commutative diagrams summarize the charts ψx:

U πx Ux/Gx U πx Ux/Gx

δx ψx δx ψx

D zn D D

x =∞, ψx(τ) = τ−τx x =∞, ψ eτ− x(τ) = 2πiτ
τx

n = |Gx|/2

We are now ready to prove that X(1) is a compact Riemann surface. Theorem 19.3
states that X(1) is a connected compact Haussdorff space, so we just need to prove that
we have a complex structure on X(1). This means verifying that the maps ψx : π(Ux)→ D
are well-defined (we must have ψ(π(γτ)) = ψ(π(τ)) for all τ ∈ Ux and γ ∈ Gx), that they
are homeomorphisms, and that the transition maps are holomorphic.

Theorem 19.9. The open cover {Ux} and atlas {ψx} define a complex structure on X(1).

Proof. As above, let x = π(τx) with τx ∈ F∗. We first verify that the maps ψx are well-
defined and homeomorphisms.

We first consider x = ∞. By Lemma 19.7, the stabilizer Gx of τx is cyclic of order 2n,
and γn = ±1 acts trivially for all γ ∈ Gx. Applying Lemma 19.8 to the function ϕ(τ) = γτ ,
we have δx(γz) = ζδx(z) for all z ∈ Ux, where ζ is a primitive nth root of unity. Thus

ψx(π(γz)) = δx(γz)n = ζnδx(z)n = δx(z)n = ψx(π(z))

for all z ∈ Ux. It follows that ψx is well defined on Ux/Gx. To show that ψx is a home-
omorphism, it suffices to show that it is holomorphic and injective, by the open mapping
theorem [3, Thm. 5.5.4]. It is clearly holomorphic, since δx(τ) is a rational function with no
poles in Ux. To prove injectivity, assume ψx(π(τ1)) = ψx(π(τ2)). Then for some integer k

δx(τ1)
n = δ n

x(τ2)

δ (τ ) = ζkδ (τ ) = δ (γkx 1 x 2 x τ2)

τ1 = γkτ2

π(τ1) = π(τ2).
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Thus ψx is an injective and therefore a homeomorphism.
For x =∞, the point τ =∞ ∈ H∗ is the unique point in U for which π(τ) =∞ ∞, and

ψx(τ) = 0 if and only if τ =∞. So ψ is well defined at∞ ∞. For τ ∈ U∞\{∞}, we have

ψ (π(τ +m)) = δ (τ +m) = e2πi(τ+m) = e2πiτ = δ (τ) = ψ (π(τ))∞ ∞ ∞ ∞

for all m ∈ Z, thus ψ is well defined. The map ψ is clearly continuous, and it has a∞ ∞
continuous inverse

1

{
π−
(

1 log z if z = 0,
ψ (z) = 2πi
∞ ∞

)
otherwise,

thus it is a homeomorphism.
We now show that the transition maps are holomorphic. Let us first consider Ux, Uy

with x, y =∞. For any z ∈ ψx(π(Ux) ∩ π(Uy)) ⊆ D we have

ψy ◦ ψ−1
n

x (z) = ψy ◦ π ◦ π−1 ◦ ψ−1x (z) = (ψy ◦ π) ◦ (ψx ◦ π)−1(z) = δ y
y ◦ δx−1(z1/nx),

where nx = |Gx|
n

/2 and ny = |Gy|/2. The map δ y
y ◦δx−1 is holomorphic on D, so it suffices to

n
show that it is a power series in znx ; this will imply that δ y

y ◦δ−1x (z1/nz) is defined by a power
series in z, hence holomorphic. Let ζ be an nxth root of unity such that δx(γz) = ζδx(z),
where γ generates Gx, as in Lemma 19.8. Note that π ◦ γ = π for any γ ∈ Γ, so we have

ny ◦ −1 ◦ ◦ ◦ −1 ◦ ◦ −1 n
δy δx (ζz) = (ψy π) (γ δ y

x (z)) = ψy π δx (z) = δy ◦ δ−1x (z).
n

It follows that δ y
y ◦ δ−1x is a power series in znx , since it maps ζz and z to the same point.

For x =∞ and y =∞ we have

ψ ◦ ψx−1(z) = ψy ◦ π ◦ π−1 ◦ ψ−1x (z) =( (ψy ◦ π) ◦ (ψx ◦)π)−1(z)∞

= δ ◦ δ−1(z1/nx 1
x ) = exp 2πi δx

− (z1/nx) ,∞

where δ ◦ δ−1x is holomorphic. and the same argument used above shows that it is actually∞
a power series in znx .

For the case x =∞ and y =∞, we have
n
δ y n
y (z + 1) = ψ y

y ◦ π ◦ Tz = ψy ◦ π(z) = δy (z),
n

so δ y
y is a holomorphic function in the variable q = e2πiz (note z ∈ U ∩ Uy is bounded).∞

Thus the transition map

ψy ◦ ψ−1
n 1

(z) = δ y

∞ y log z
2πi

is holomorphic. The case x = y =

( )
∞ is trivial, since ψ∞ ◦ ψ−1 is the identity map.∞

Theorem 19.10. The modular curve X(1) is a compact Riemann surface of genus 0.

Proof. That X(1) is a compact Riemann surface follows immediately from Theorems 19.3
and 19.9. To show that it has genus 0, we triangulate X(1) by connecting the points i, ρ,
and ∞, partitioning the surface into two triangles. Applying Euler’s formula

V − E + F = 2− 2g

with V = 3,E = 3, and F = 2, we see that g = 0.

Theorem 19.10 implies that X(1) is homeomorphic to the Riemann sphere S = P1(C),
since, up to isomorphism, S is the unique compact Riemann surface of genus 0. The
modular curve Y (1) is also a Riemann surface of genus 0, but it is not compact. As we saw
in Lecture 17, Y (1) is homeomorphic to the complex plane C via the j-function.
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19.4 Modular curves

We also wish to consider modular curves defined as quotients H∗/Γ for various finite index
subgroups Γ of SL2(Z) that have desirable arithmetic properties.

Definition 19.11. The principal congruence subgroup Γ(N) is defined by

Γ(N) =
{(

a b
c d

A congruence subgroup (of level N

)
∈ SL ≡ ( 1 0

2(Z) : a b
d 0 1 ) mod N .c

) is any subgroup

( )
of SL2(Z) that

}
contains Γ(N). A

modular curve is a quotient of H∗ or H by a congruence subgroup.

Remark 19.12. Every congruence subgroup is a finite index subgroup of SL2(Z). The
converse does not hold; in fact, most finite index subgroups of SL2(Z) are not congruence
subgroups, although it is surprisingly difficult to write down explicit examples (you will
have the opportunity to explore this question in Problem Set 10).

There are two families of congruence subgroups of particular interest:

Γ1(N) :=
{(

a b
)
∈ SL2(Z) : a

c d

(
b

c d

Γ0(N) := a b
c d ∈ SL2(Z) : a b

c d

)
1

}
Note that Γ(1) = Γ1(1) = Γ0(1)

{(
= SL

)
2(Z). We no

(
w define

) ≡ ( 0 1
∗ ) mod N} ;

≡ ( 0
∗ ∗ ) mod N ;∗

the modular curves

X(N) := H∗/Γ(N), X1(N) := H∗/Γ1(N), X0(N) := H∗/Γ0(N),

and similarly define

Y (N) := H/Γ(N), Y1(N) := H/Γ1(N), Y0(N) := H/Γ0(N).

Following the same strategy we used for X(1), one can show that these are all compact
Riemann surfaces (things are slightly more complicated because there may be many in-
equivalent cusps to consider).
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