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18 The CM action

Let L ⊆ C be a lattice and E x3
L/C the corresponding elliptic curve y2 = 4 −g2(L)x−g3(L).

In the previous lecture we proved that the endomorphism rings End(EL) and End(C/L)
are both isomorphic to the ring

O(L) := {α ∈ C : αL ⊆ L},

which is either equal to Z, or an order O in an imaginary quadratic field. We then considered
the following question: given an order O in an imaginary quadratic field, for which lattices L
do we have O(L) = O. By the Uniformization Theorem (Corollary 16.12), this is equivalent
to asking which elliptic curves E/C have complex multiplication (CM) by O; recall that this
means End(E) = O.

We established the necessary condition that L must be homothetic to an O-ideal, and
defined proper O-ideals to be the O-ideals L for which O(L) = O.1 So, by construction,
O(L) = O if and only if L is homothetic to a proper O-ideal; in this lecture we will give a
more intrinsic condition for an O-ideal to be proper. We defined the ideal class group cl(O)
as the set of proper O-ideals modulo the equivalence relation

a ∼ b ⇐⇒ γa = δb for some nonzero γ, δ ∈ O,

which holds precisely when a and b are homothetic as lattices. It follows that there is a
one-to-one relationship between cl(O) and the set of homethety classes of lattices L for
which O(L) = O, equivalently, the set of isomorphism classes of elliptic curves E/C for
which End(E) = O.

Recalling that isomorphism classes of elliptic curves over an algebraically closed field
are uniquely identified by their j-invariants, we now define the set

Ell (C) = {j(E) : E is defined over C and End(E) = O}.O

It follows from our discussion above that there is a bijection from cl(O) to Ell (C) thatO
sends the equivalence class [a] of a proper O-ideal a to the isomorphism class j(Ea) = j(a);
the reverse map is given by the Uniformization theorem, which tells us that we can construct
a lattice L for which j(L) = j(E), and this lattice L is then homothetic to a proper O-ideal a
that has the same j-invariant j(a) = j(E) when viewed as a lattice.

As you will prove in Problem Set 9, cl(O) is a finite group; thus the set Ell (C) is finite.O
Its cardinality is the class number h(O) = |cl(O)|, which we may also write as h(D), where
D = disc(O). Remarkably, not only are the sets cl(O) and Ell (C) in bijection, the setO
Ell (C) admits a group action by cl(O). In order to define this action, and to gain a betterO
understanding of what it means for an O-ideal to be proper, we first introduce the notion
of a fractional O-ideal.

1The term “proper O-ideal” is an unfortunate historical choice, since this terminology can also refer to
O-ideals that are properly contained in O. In this lecture we will prove that O-ideals are proper if and only
if they are invertible and henceforth use the term “invertible O-ideal” instead.
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18.1 Fractional ideals

Definition 18.1. Let O be an integral domain with fraction field K. Any set of the form
b = λa with λ ∈ K× and a an O-ideal is called a fractional O-ideal. Multiplication of
fractional ideals b = λa and b′ = λa′ is defined in the obvious way:

bb′ := (λλ′)aa′,

where aa′ is the product of the O-ideals a and a′.2

Like O-ideals, fractional O-ideals are O-modules (additive groups that admit a scalar
multiplication by O).3 Fractional O-ideals that happen to lie in O are thus O-ideals (such
fractional O-ideal are sometimes called integral O-ideals to emphasize this); conversely,
every O-ideal is a fractional

a
O-ideal. If b = λa is a fractional O-ideal we can always write

λ = for some a, b ∈ O with b = 0, and after replacing a with aa we can write b = 1ab b
with b ∈ O nonzero and a an O-ideal. In our setting, where O is an order in an imaginary
quadratic field K (which must be its fraction field since it is the smallest field containing
O), we can even make b a positive integer by rationalizing the denominator and noting that
a = −1 · a for any O-ideal a.

18.2 Norms

We now let O be an order in an imaginary quadratic field K. We want to define the norm
of fractional O-ideal b = λa, which will be a rational number that is the product of the
norms of λ and a, but first we need to define the norm of a field element λ ∈ K×, and the
norm of an O-ideal a.

Definition 18.2. Let K/Q be a number field and let α ∈ K×. Let α1, . . . , αm be the roots
of the minimal polynomial f ∈ Q[x] of α over Q (which may lie in an extension of K), and
let n = [K : Q(α)]. The (field) norm and trace of α are defined by

m m

Nα :=
∏

αni
i=1

∈ Q× and Tα :=
∑

nαi
i=1

∈ Q.

Note that Nα is a power of the constant term of the monic polynomial f , and Tα is a
multiple of the negation of the degree m − 1 coefficient of f ; this makes it clear that both
Nα and Tα lie in Q (and in Z if α is an algebraic integer). Note that Nα is nonzero because
the constant term of f cannot be nonzero (otherwise f would not be minimal).

When K/Q is a Galois extension we can simply take the product and sum over all mn
Galois conjugates σ(α) for σ ∈ Gal(K/Q). This makes it clear that in this case the norm
map is multiplicative. In fact this holds for any number field K; this follows from the proof
of Lemma 18.4 below, which relates Nα to the determinant of the multiplication-by-α map,
which can be viewed as a linear transformation of the Q-vector space K.

QNote that Nα depends on K, not just α; for example, if α ∈ Q× then Nα = α[K: ],
which will vary if we fix α and change K. It should really be viewed as a homomorphism

N: K× → Q×

2One can also add fractional O-ideals via b + b′ := {b + b′ : b ∈ b, b′ ∈ b
3

}, but we won’t need this.
Some authors define fractional O-ideals to be finitely generated O-modules that are contained in K.

Every finitely generated O-module in K is a fractional ideal under our definition, and when O is noetherian
(which applies to orders in number fields, the only case we care about), the definitions are equivalent.
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and is often written as NK/ to emphasis this. Definition 18.2 generalizes to any finite ex-Q
tension K/k (just replace Q with k), and is then denoted NK/k and defines a homomorphism
K× → k×.

When K ' End0(E) is an imaginary quadratic field, Definition 18.2 coincides with our
definition of the (reduced) norm and trace of α as an element of End0(E) (see Definition
13.6). If K is an imaginary quadratic field embedded in C, this is equivalent to taking
Nα = αᾱ and Tα = α+ ᾱ, where ᾱ denotes complex conjugation (equivalently, conjugation
by the non-trivial element of Gal(K/Q). Thus in this setting the complex conjugate

ᾱ = Tα− α = α̂

corresponds to the dual of α ∈ End0(E) = K ↪→ C.

Definition 18.3. Let O be an order in a number field K and let a be a nonzero O-ideal.
The (ideal) norm of a is

Na := [O : a] = #O/a ∈ Z>0.

Alternatively, if we fix Z-bases for O and a we have

Na = |detMa|

where Ma is an integer matrix whose rows express the basis elements of a as Z-linear
combinations of basis elements of O. Note that |detMa| is independent of the choice of
basis, and it is nonzero because a and O are both free Z-modules of rank r = dimK (which
also makes it clear why [O : a] is actually finite).4 That these two definitions are equivalent
follows from the fact that we can diagonalize Ma using row and column operations that do
not change |detMa| (each corresponding to a change of basis for O or a).5 It is then clear
that we have O/a ' Z/d1Z⊕ · · · ⊕ Z/drZ, where d1, . . . , dr are the diagonal entries of this
matrix, and we then have |d1 · · · dr| = |detMa|. We can also interpret Na as the ratio of
the volumes of fundamental parallelograms for a and O, which we may view as Z-lattices
embedded in the Q-vector space K ' Qr (with the Euclidean metric).

We now relate the norm of a nonzero element of O to the norm of the principal ideal it
generates.

Lemma 18.4. Let α be a nonzero element of an order O in a number field K. Then

N(α) = |Nα|,

where (α) denotes the principal O-ideal generated by α.

Proof. Let OK be the maximal order in K. Note that N(α) = [O : αO] = [OK : αOK ] is
the same as the norm of the principal OK-ideal generated by α, so without loss of generality
we assume O = OK . Let L = Q(α) ⊆ K, and let us fix a Z-basis for OK that contains a
Z-basis for OL; this is possible because OL is a free Z-module of rank m = [L : Q] that
is contained in the free Z-module OK of rank r = [K : Q]. Note that m|r, since K is an
L-vector space of dimension n = [K : L]. Moreover, we may order our basis into n blocks

4That a is a free Z-module follows from the fact that it is a submodule of the free Z-module O and Z is
a principal ideal domain (submodules of free module over PIDs are always free, but this is not true of more
general rings). That a has the same rank as O follows from the fact that it contains a nonzero integer (for
example, the norm of any of its elements) and therefore an integer multiple of O.

5This amounts to putting Ma in Smith normal form.
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of size m, each of which is a Q-basis for an m-dimensional subspace of K isomorphic to L.
Let us now consider the r × r matrix M(α) of the Z-linear transformation given by the
multiplication-by-α map O → O with respect to this basis. Assuming we order our basis
appropriately, the matrix M(α) is then a block diagonal matrix consisting of n square m×m
matrices along the diagonal, all of which are conjugate. We then have

N(α) = |detM(α)|.

On the other hand, the characteristic polynomial g ∈ Z[x] of M(α) is the nth power of the
minimal polynomial f of α over Q (which lies in Z[x] because α is an algebraic integer),
and Nα is the constant coefficient of g, which has the same absolute value as detM(α).

To see this, note that if B is the first block diagonal matrix of M , representing the
multiplication by α map on OL, then f is the minimal polynomial of B, since it is the
minimal polynomial of α, and it has degree m so it is the characteristic polynomial of B. The
n block diagonal matrices of M are all conjugate, hence they all have the same characteristic
polynomial, and therefore g = fn.

Warning 18.5. Given that the field norm is multiplicative and that we can view the ideal
norm as the absolute value of a determinant, it would be reasonable to expect the ideal
norm to be multiplicative. This is not true. As an example, consider the ideal a = [2, 2i]
in the order O = [1, 2i], which has norm Na = [O : a] = 2. Then a2 = [4, 4i] and

Na2 = 8 = 22 = (Na)2.

However, as we shall see (at least when O is an order in an imaginary quadratic field),
the ideal norm is multiplicative when a and b are both proper/invertible O-ideals, hence
in all cases when O = OK is the maximal order. In any case we always have the following
corollary of Lemma 18.4.

Corollary 18.6. Let O be an order in a number field, let α ∈ O be nonzero, and let a be
an O-ideal. Then

N(αa) = NαNa.

Proof. We have

N(αa) = [O : αa] = [O : a][a : αa] = [O : a][O : αO] = NaN(α) = NαNa

The corollary implies that N(ab) = NaNb whenever one of a and b is principal. This
allows us to make the following definition.

Definition 18.7. Let b = λa be a nonzero fractional ideal in an order O of a number field.
The norm of b is

Nb := NλNa ∈ Q×.

Corollary 18.6 ensures that this is well defined: if λa = λ′a′, after writing λ = a/b and
λ′ = a′/b′ we have ab′a = a′ba′ and therefore

NaNb′ Nλ
Na′ = Na = Na,

Na′Nb Nλ′

so Nλ′Na′ = NλNa.

Taking λ = 1 or a = O, we can view this as a generalization of Definitions 18.2 and 18.3.
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18.3 Invertible ideals

We now return to our original setting, where O is an order in an imaginary quadratic field.
Extending our terminology for O-ideals, for any fractional O-ideal b we define

O(b) := {α : αb ⊆ b},

and say that b is proper if O(b) = O. We say that a fractional O-ideal b is invertible if
there exists a fractional O-ideal b−1 for which bb−1 =

1
O. Notice that this definition applies

in the case that b is an O-ideal, but then b− will not be an O-ideal (unless b = O). As we
shall see, the notions of properness and invertibility coincide, but let us first note that for
b = λa, whether b is proper or invertible depends only on the O-ideal a.

Lemma 18.8. Let O be an order in an imaginary quadratic field, let a be a nonzero O-ideal,
and let b = λa be a fractional O-ideal. Then a is proper if and only if b is proper, and a is
invertible if and only if b is invertible.

Proof. For the first statement, note that {α : αb ⊆ b} = {α : αλa ⊆ λa} = {α : αa ⊆ a
1

}.
For the second, if a is invertible then b− = λ−1a−1, and if b is invertible then a−1 = λb−1,
since we have aa−1 = aλb−1 = bb−1 = O.

We now prove that the invertible O-ideals are precisely the proper O-ideals and give an
explicit formula for the inverse when it exists. Our proof follows the presentation in [1, §7].

Theorem 18.9. Let O be an order in an imaginary quadratic field and let a = [α, β] be an
O-ideal. Then a is proper if and only if a is invertible. Whenever a is invertible we have
aā ¯= (Na), where ā = [ᾱ, β] and (Na) is the principal O-ideal generated by the integer Na;
the inverse of a is then the fractional O-ideal a−1 = 1 ā.Na

Proof. We first assume that a = [α, β] is a proper O-ideal and show that aā = (Na), which
implies a−1 = 1 ā. Let τ = β/α, so that a = α[1, τ ], and let ax2 + bx + c be the leastNa
multiple of the minimal polynomial of τ that lies in Z[x], so gcd(a, b, c) = 1. The fractional
ideal [1, τ ] is homothetic to a, and we have O([1, τ ]) = O(a) = O, since a is proper.

Let O = [1, ω]. Then ω ∈ [1, τ ] and ω = m + nτ for some m,n ∈ Z; after replacing ω
with ω−m, we may assume ω = nτ . We also have ωτ ∈ [1, τ ], so nτ2 ∈ [1, τ ], which implies
that a|n, since otherwise the polynomial ax2 +bx+c would have a leading coefficient smaller
than a in absolute value. And aτ [1, τ ] ⊆ [1, τ ], so ατ ∈ O([1, τ ]) = O, therefore n = a and
O = [1, aτ ]. Thus

1 1 N(α)
N(a) = [O : a] =

[
[1, aτ ] : α[1, τ ]

]
=
a

[
[1, aτ ] : α[1, aτ ]

]
= [
a
O : αO] = .

a

We also have
aā ¯= [α, β][ᾱ, β] = αᾱ[1, τ ][1, τ̄ ] = N(α)[1, τ, τ̄ , τ τ̄ ].

Since aτ2 + bτ + c = 0, we have τ + τ̄ = −b/a, and τ τ̄ = c/a, with gcd(a, b, c) = 1. So

N(α)
aā = N(α)[1, τ, τ̄ , τ τ̄ ] = [a, aτ,−b, c] = Na[1, aτ ] = (Na)

a
O = (Na)

as claimed. Conversely, if a is invertible, then for any γ ∈ C we have

γa ⊆ a =⇒ γaa−1 ⊆ aa−1 =⇒ γO ⊆ O =⇒ γ ∈ O,

so O(a) ⊆ O, and therefore a is a proper O-ideal, since we always have O ⊆ O(a).
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Corollary 18.10. Let O be an order in an imaginary quadratic field and let a and b be
invertible fractional O-ideals. Then N(ab) = NaNb.

Proof. If a = αa′ and b = βb′ for some α, β ∈ K× and O-ideals a′ and b′, then a′ and
b′ are invertible, by Lemma 18.8. By definition, Na = NαNa′ and Nb = NβNb′, and the
field norm is multiplicative, so N(αβ) = NαNβ. Thus it suffices to consider the case where
a = a′ and b = b′ are invertible O-ideals. We then have

(N(ab)) = abab = abab = aabb = (Na)(Nb),

and it follows that N(ab) = NaNb.

18.4 The CM action

Now let E/C be an elliptic curve with End(E) = O. Then E is isomorphic to Eb, for some
proper O-ideal b. For any proper O-ideal a we define the action of a on Eb via

aEb = Ea−1b (1)

(the reason for using Ea−1b rather than Eab will become clear later). The action of the
equivalence class [a] on the isomorphism class j(Eb), is then defined by

[a]j(Eb) = j(Ea−1b), (2)

which we can also write as
[a]j(b) = j(a−1b),

and it is clear that this does not depend on the choice of representatives a and b.
If a is a nonzero principal O-ideal, then the lattices b and a−1b are homothetic, and

we have aEb ' Eb. Thus the identity element of cl(O) acts trivially on Ell (C). For anyO
proper O-ideals a,b, and c we have

a(bEc) = aEb 1c = Ea 1b 1c = E(ba) 1c = (ba)E =− − − − c (ab)Ec.

Thus we have a group action of cl(O) on Ell (C).O
For any proper O-ideals a and b, we have [a]j(b) = j(a−1b = j(b) if and only if b is

homothetic to a−1b, by Theorem 16.5, and in this case we have ab = λb for some nonzero
λ ∈ O, and then a = λO = (λ) is principal. Thus the only element of cl(O) that fixes
any element of Ell (C) is the identity. This implies that the action of cl(O O) is not only
faithful, it is free: only the identity has a fixed point. The fact that the sets cl(O) and
Ell (C) have the same cardinality implies that the action must be transitive: if we fix anyO
j0 ∈ Ell (C) the images [a]j0 of j0 under the action of each [a] ∈ cl(O) must all be distinct,O
otherwise the action would not be free); there are only #Ell (C) = #cl(O O) possibilities, so
the cl(O)-orbit of j0 is Ell (C).O

A group action that is both free and transitive is said to be regular. Equivalently, the
action of a group G on a set X is regular if and only if for all x, y ∈ X there is a unique
g ∈ G for which gx = y. In this situation the set X is said to be a principal homogeneous
space for G, or simply a G-torsor. With this terminology, the set Ell (C) is a cl(O O)-torsor.

If we fix a particular element x of a G-torsor X, we can then view X as a group that
is isomorphic to G under the map that sends y ∈ X to the unique element g ∈ G for
which gx = y. Note that this involves an arbitrary choice of the identity element x; rather
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than thinking of elements of X as group elements, it is more appropriate to think of the
“difference” or “ratios” of elements of X as group elements. In the case of the cl(O)-torsor
Ell (C) there is an obvious choice for the identity element: the isomorphism class j(E ).O O
But when we reduce to a finite field Fq and work with the cl(O)-torsor Ell (FO q), as we shall
soon do, we cannot readily distinguish the element of Ell (FO q) that corresponds to j(E ).O

18.5 Isogenies over the complex numbers

To better understand the cl(O)-action on Ell (C) we need to look at isogenies betweenO
elliptic curves over the complex numbers. Let L ⊆ L′ be lattices, and let E and E′ be the
elliptic curves corresponding to C/L and C/L′, respectively. The map ι : C/L→ C/L′ that
lifts z ∈ C/L to C and then reduces it modulo L′ induces an isogeny φ : E → E′ that makes
the following diagram commute:

C/L ι C/L′

Φ Φ′

E(C) φ E′(C)

Note that L′ contains L as a sublattice, so this is well-defined: equivalence modulo L′

implies equiv( alence modulo)L (but not vice versa). The isomorphism Φ sends z ∈ C/L to
the( point ℘(z;L), ℘′(z;L) on E, and the isomorphism Φ′ sends z ∈ C/L′ to the point
℘(z;L′), ℘′(z;L′)

)
on E′.

It is clear that the induced map φ := Φ′ ◦ ι ◦ Φ−1 is a group homomorphism; to show
that it is an isogeny we need to check that it is also a rational map. To see this, notice that
the meromorphic function ℘(z;L′) is periodic with respect to L′, and therefore also periodic
with respect to the sublattice L. It is thus an elliptic function for L, and since it is an even
function, it may be expressed as a rational function of ℘(z;L), by Lemma 17.1. Thus

u
℘(z;L′) =

v

( )
for some polynomials u, v C[x]. Similarly, ℘

(℘(z;L)

℘(z;L)
)

∈ ′(z;L′) is an odd elliptic function for L, so
℘′(z : L′)/℘′(z : L) is an even elliptic function for L, and we therefore have

s
(
℘(z;L)

℘′(z, L′) =
t

)
℘′(z;L),

℘(z;L)

for some s, t [

)
∈ C x]. Thus

(

φ(x, y) =

(
u(x) s(x)

, y
v(x) t(x)

)
.

The points in the kernel of φ are precisely the points ℘(z;L), ℘′(z;L) for which z ∈
L′ (modulo L). It follows that the kernel of φ has cardinality [L′ : L], and we are in
characteristic zero, so the isogeny φ is separable and therefore

(
deg φ =

)
| kerφ| = [L′ : L].

We now note that the homothetic lattice L′′ = nL′ has index n in L, by Lemma 17.15. If
we let E′′/C be the elliptic curve corresponding to C/L′′ (which is isomorphic to E′), then
the inclusion map ι : C/L′′ → C ˜/L induces an isogeny φ : E′′ → E of degree n. Composing

7
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φ̃ with the isomorphism from E′ to E′′ ˆ, we obtain the dual isogeny φ : E′ → E, since the
composition φ ◦ φ̂ is precisely the multiplication-by-n map on E′.

If a and b are invertible O-ideals then we have an isogeny from Eb to aEb = Ea−1b

induced by the lattice inclusion b ⊆ a−1b (to see that this is an inclusion, note that ab ⊆ b).
Thus there is an isogeny φa associated to the action of a on Eb defined in (1). Given any
elliptic curve E/C with endomorphism ring O and an invertible O-ideal a, we define the
a-torsion subgroup

E[a] = {P ∈ E(C) : αP = 0 for all α ∈ a},

where we view α ∈ a ⊂ O ' End(E) as the multiplication-by-α endomorphism.

Theorem 18.11. Let O be an imaginary quadratic order, let E/C be an elliptic curve with
endomorphism ring O, let a be an invertible O-ideal, and let φa be the corresponding isogeny
from E to aE. The following hold:

(i) kerφa = E[a];

(ii) deg φa = Na.

Proof. By composing φa with an isomorphism if necessary, we may assume without loss of
generality we assume E = Eb for some proper O-ideal b. Let Φ be the isomorphism from
C/b→ Eb that sends z to (℘(z), ℘′(z)). We have

Φ−1(E[a]) = {z ∈ C/b : αz = 0 for all α ∈ a}
= {z ∈ C : αz ∈ b for all α ∈ a}/b
= {z ∈ C : za ⊆ b}/b
= {z ∈ C : zO ⊆ a−1b}/b
= (a−1(b)/b

= ker C z
/b −→→z C/a−1b

= Φ−1(kerφa).

)

This proves (i). We then note that

#E[a] = #(a−1b)/b = [a−1b : b] = [b : ab] = [O : aO] = [O : a] = Na,

which proves (ii).

18.6 The Hilbert class polynomial

Let O be an order of discriminant D in an imaginary quadratic field K. The first main
theorem of complex multiplication states that the elements of Ell (C) are algebraic integersO
that all have the same minimal polynomial over K:

HD(X) =
∏

(X − j(E))

j(E)∈Ell (C)O

known as the Hilbert class polynomial (of discriminant D).6 Remarkably, not only do the
coefficients of HD(X) lie in K, they actually lie in Z. Moreover, the theorem states that

6Some authors reserve the term Hilbert class polynomial for the case O = OK and call HD(X) a ring
class polynomial in general.
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the splitting field L of HD(X) over K has Galois group isomorphic to cl(O). The roots of
HD(X) are precisely the elements of Ell (C), and the action of the Galois group Gal(L/K)O
is precisely the cl(O)-action on Ell (C) defined above.O

The first main theorem of complex multiplication is one of the central results of what
is known as class field theory. We will prove it over the course of the next two lectures.
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