
18.783 Elliptic Curves Spring 2015

Problem Set #7 Due: 04/03/2015

Description

These problems are related to the material covered in Lectures 13-14. As usual, the first
person to spot each non-trivial typo/error will receive one point of extra credit.

Instructions: Solve one of Problems 1 and 2, and then complete the survey Problem 3.

Problem 1. The Weil conjectures (100 points)

The zeta function of a smooth projective curve C/Fq (or more generally, a projective
variety) is the exponential generating function
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The exponential of a formal power series F ∈ Q[[t]] with zero constant term is given by

∞

exp(F ) :=
∑ F k

k=0

,
k!

and the inverse operation is the formal logarithm1
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The integers #C(Fqn) can be recovered from Z(C;T ) via
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The definition of the zeta function may seem awkward at first

∣∣
glance, but it has many

remarkable properties. Most notably, although it is defined by an infinite power series,
it is actually a rational function.

Theorem 1 (Weil). Let C/Fq be a smooth projective curve of genus g.

P (T )(i) (rationality) ZC(T ) = for some P(1−T )(1−qT ) ∈ Z(T ) of degree 2g.

(ii) (functional equation) ZC( 1 ) = q1qT
−gT 2−2gZC(T )

(iii) (Riemann hypothesis) The roots α1, . . . α2g ∈ C of P (T ) satisfy |αi| = 1/
√
q.

This theorem was conjectured by Emil Artin in 1924 and proved by Weil in 1949.
Weil also proposed generalizations of the three parts of the theorem to smooth projective
varieties of arbitrary dimension; these became known as the Weil conjectures. Many
mathematicians contributed to the proof of the Weil conjectures, including Bernard

n1These definitions agree with the usual Taylor series expansions; note that log(1 − F ) = −
∑∞ F

k=1 n
.
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Dwork, Michael Artin, Alexander Grothendieck, and Pierre Deligne, who completed the
proof in the 1970’s.2 In this problem you will prove the Weil conjectures for elliptic
curves and derive several useful facts along the way.

The proof relies on various properties of the Frobenius endomorphism, most of which
actually hold for any endomorphism of any elliptic curve E/k, in fact, for any element
of the endomorphism algebra End0(E) := End(E) ⊗Z Q, so we will prove them in this
generality and then apply them to the Frobenius endomorphism of an elliptic curve over
a finite field. So let φ be an arbitrary element of End0(E), and let α, β ∈ C be the roots
of its characteristic polynomial x2 − tr(φ)x+ deg(φ).

(a) Show that φ can be written uniquely as φ = φr + φi, with φr Q, φ 0
i End (E)

and φ2 ).
√ ∈ ∈

i = −deg(φi Define re(φ) = φr ∈ R and im(φ) = deg(φi) ∈ R, and let
Q(φ) denote the Q-subalgebra of End0(E) generated by φ. Prove that there is a
unique field embedding ι : Q(φ) ↪→ C that maps φ to re(φ) + im(φ)i, and that for
all λ ∈ Q(φ) we have ι(λ̂) = ι(λ), where the bar denotes complex conjugation in C.

(b) Use part (a) to prove that |α| = |β| =
√

deg φ and therefore | tr(φ)| ≤ 2
√

deg φ.

(c) By applying part (b) to the Frobenius endomorphism π of E/Fq and recalling that
1−π is separable, give a very short proof of Hasse’s theorem: |q+1−#E(Fq)| ≤ 2

√
q.

(d) Prove that for any positive integer n we have tr(φn) = αn + βn and therefore

deg(1− φn) = deg(φ)n + 1− αn − βn.

Deduce that if φ = π is the Frobenius endomorphism of E/Fq, then

#E(Fqn) = qn + 1− αn − βn.

As a quick digression, part (d) implies that for E/Fq we can easily compute #E(Fqn)
once we know #E(Fq). A useful method for doing this is the following recurrence.

(e) Let a0 = 2 and an = qn + 1 − #E(Fqn). Prove that an+2 = a1an+1 − qan for all
n ≥ 0. Conclude that the zeta function ZE(T ) is determined by #E(Fq).

You are now ready to prove the Weil conjectures for elliptic curves.

(f) Prove that

exp

(∑∞ deg(1− φn)

n=1
n

Tn

)
=

1− tr(φ)T + deg(φ)T 2

.
(1− T )(1− deg(φ)T )

By applying this when φ = π is the Frobenius endomorphism of E/Fq, prove that
the rationality statement (i) in Theorem 1 holds with P (T ) = 1 − tr(π)T + qT 2 in
the case that C is the elliptic curve E.

(g) Prove that the functional equation (ii) and Riemann hypothesis (iii) in Theorem 1
hold when C is an elliptic curve.

2Deligne was awarded both the Fields medal (1978) and the Abel prize (2013) for this work.
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You may be wondering why ZE(T ) is called a zeta function, and how it relates to
the Riemann zeta function

∞

ζ(s) :=
n

∑ 1

=1

.
ns

The sum on the RHS converges for complex s with real part greater than 1, and it
extends to a unique analytic function ζ(s) that is defined on all of C except for a simple
pole at s = 1. The normalized Riemann zeta function ξ(s) := πs/2Γ(s/2)ζ(s) satisfies
the functional equation3

ξ(s) = ξ(1− s),

and the Riemann hypothesis states that the zeros of ξ(s) all lie on the critical line
{s ∈ C : Re(s) = 1/2}.

For an elliptic curve E/Fq we define

ζE(s) := ZE(q−s).

(h) Prove that ζE(s) = ζE(1− s).

(i) Prove that every zero of ζE(s) lies on the critical line {s ∈ C : Re(s) = 1/2}.

You may recall that the Riemann zeta function has an Euler product

ζ(s) =
∏

1
1

p

(
− p−s

)−
,

where p ranges over all primes. The function ζE(s) also has an Euler product that can
be written as a product over points P ∈ E(Fq), but in this product we don’t want to
distinguish points P and Q that are Galois conjugate, meaning that Q = σ(P ) for some
automorphism σ ∈ Gal(Fq/Fq). We thus define the closed point

P := {σ(P ) : σ ∈ Gal(Fq/Fq)}.

The set P is the orbit of P ∈ E(Fq) under the action of Gal(Fq/Fq). It is a finite set
because P lies in some finite extension Fqn of Fq. Indeed, if Fqn/Fq is the minimal such
extension then #P = n (because Gal(Fqn/Fq) is cyclic of order n). We now define N(P )
to be the cardinality of this minimal extension; it is well-defined because N(Q) = N(P )
whenever Q = P (so it is an invariant of P , not just P ).

(j) Prove that

ζE(s) =
∏
P

(
1−N(

1
P )−s

)−
where P ranges over all closed points of E(Fq).

3Here π = 3.1415 . . . and Γ(t) :=
∫∞

xt−1e−xdx.
0
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Problem 2. An elliptic curve with complex multiplication (100 points)

Let E/Q be the elliptic curve defined by

y2 = x3 − 35x− 98.

)We wish to consider the endomorphism φ(x, ) =
(
u(xy v(x) ,

s(x)
t(x) y

)
, where

u(x) = 2x2 + (7−
√
−7)x+ (−7− 21

√
−7),

v(x) = (−3 +
√
−7)x+ (−7 + 5

√
−7),

s(x) = 2x2 + (14− 2
√
−7)x+ (28 + 14

√
−7),

t(x) = (5 +
√
−7)x2 + (42 + 2

√
−7)x+ (77− 7

√
−7).

The following block of sage code represents φ = (uv ,
s) as a pair of rational functionst

in x, with the factor y in the second coordinate implicit. It then verifies that φ is an
endomorphism of E by checking that its coordinate functions satisfy the curve equation
y2 = f(x) = x3 − 35x− 98:

R.<t>=PolynomialRing(Rationals())
N.<d>=NumberField(tˆ2+7)
F.<x>=PolynomialRing(N)
u=2*xˆ2 + (-d + 7)*x -(7+21*d)
v=(-3+d)*x +(-7+5*d)
s=2*xˆ2 + (-2*d + 14)*x + (14*d + 28)
t=(5+d)*xˆ2 + (42+2*d)*x + (77-7*d)
phi = (u/v,s/t)
f=xˆ3-35*x-98
assert phi[1]ˆ2*f == f.subs(phi[0])

Note: on the LHS of the assert we also squared the implicit y and replaced y2 by f(x).

(a) Determine the characteristic polynomial of φ.

(b) Let p be a prime of good reduction for( E. Prove that the reduction of E at p is

supersingular if the Legendre symbol −7 otherwise.p

)
is −1 and ordinary

(c) Determine End(E). Be sure to justify your answer.

(d) Let p be the least prime greater than the last two digits of your student ID where
E has supersingular reduction. Prove that the endomorphism algebra of E mod p
is a quaternion algebra Q(α, β) with α2, β2 < 0 and αβ = −βα. Give α2 and β2

explicitly, and express α and β in terms of φ and the Frobenius endomorphism π.

(e) Prove that every prime p where E has ordinary reduction satisfies the norm equation

4p = t2 + 7v2,

where t = trπ is the trace of Frobenius and v is a positive integer.

(f) Find a pair of primes p, q > 2512 for which the reduction Ep of E modulo p has
exactly 4q rational points. Be sure to format your answer so that the primes p and q
both fit on the page (line wrapping is fine).
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(g) Describe a probabilistic algorithm that, given a sufficiently large integer n, outputs
two integers p and q that have passed 100 Miller Rabin tests with p ∈ [2n, 2n+1]
such that if p is prime, then #Ep(Fp) = q (we can be morally certain that both p
and q are in prime, but the algorithm is not required to guarantee this).

Under the heuristic model that each integer m is prime with probability 1/ logm,
bound the expected running time of your algorithm and compare it an alternative
approach that generates random curves and counts points using Schoof’s algorithm
(your algorithm should be significantly faster; in fact, it should be faster than any
method known for proving the primality of a general n-bit integer — this is why we
do not want to require the algorithm to guarantee that p and q are prime).

Problem 3. Survey

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,”
10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 =
“brutal”). Also estimate the amount of time you spent on each problem to the nearest
half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

3/19 Endomorphism algebras

3/31 Ordinary and supersingular curves

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.
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