
18.783 Elliptic Curves Spring 2015  
Problem Set #5 Due: 03/13/2015  

Description 

These problems are related to the material covered in Lectures 9-10. As usual, the first 
person to spot each non-trivial typo/error will receive one point of extra credit. 

Instructions: Solve two of Problems 1-3 and then do Problem 4, which is a survey. 
Please be sure to include your name on your solutions and give your submission a filename 
of the form LastNamePSet5.pdf. 

Problem 1. The image of Galois (50 points) 

Let E/Q be an elliptic curve, let f be a prime, and let K = Q(E[f]) be the Galois 
extension of Q obtained by adjoining the coordinates of all the points in the f-torsion 
subgroup E[f] to Q. The Galois group Gal(K/Q) acts linearly on the vector space 

E[f] � Z/fZ ⊕ Z/fZ � F2 
e , 

thus there is a group homomorphism 

ρE : Gal(K/Q) → GL2(Fe) 

that maps each field automorphism σ ∈ Gal(K/Q) to an element of the general linear 
group GL2(Fe), which we may view as an invertible 2 × 2 matrix with coefficients in Fe 
(after choosing a basis for E[f]). 

As you may recall, a homomorphism from a group G to a group of linear transfor­
mations is called a (linear) representation of G. The map ρE is a representation of the 

1group Gal(K/Q), known as the mod-f Galois representation attached to E. 
For each prime p  = f where E has good reduction there is a Frobenius element Frobp 

of Gal(K/Q), which reduces to the Frobenius map x  → xp modulo a prime of K lying 
above p. Let Ep denote the reduction of E modulo such a prime p. The Frobenius element 
is mapped by ρE to an element of GL2(Fe) corresponding to πe, the restriction of the 
Frobenius endomorphism of Ep to the f-torsion subgroup Ep[f]. The Frobenius element 
Frobp is only determined up to conjugacy (and is usually identified with its conjugacy 
class), since it depends on a choice of basis, but we can unambiguously determine the 
characteristic polynomial of ρE (Frobp) = πe. In particular, the trace of ρE (Frobp) is the 
trace of Frobenius t = p + 1 − #Ep(Fp) modulo f, and the determinant of ρE (Frobp) is 
simply p mod f (note that p  = f). 

The Chebotarev density theorem tells us that for any conjugacy class C of Gal(K/Q), 
the proportion of primes p for which Frobp lies in C is exactly the ratio #C/#Gal(K/Q). 
Asymptotically, we can think of each prime p as being assigned a uniformly random 
Frobenius element Frobp ∈ Gal(K/Q) which is mapped by ρE to a uniformly random 
element of the image of ρE in GL2(Fe). For a typical elliptic curve E/Q, the represen­
tation ρE is surjective and its image is all of GL2(Fe), but this is not always the case. 
Number theorists (and others) are very interested in understanding these exceptional 

1One can replace K with any algebraic extension (including an algebraic closure of Q. 
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cases. The image of ρE has a direct impact on the statistical behavior of Ep[f] as p 
varies. For instance, the proportion of primes p for which Ep[f] = Ep(Fp)[f] is precisely 
1/# im ρE , since this occurs if and only if ρE (Frobp) = πe is the identity. 

The purpose of this exercise is for you to attempt to determine the image of ρE 
for various elliptic curves E/Q by analyzing the statistics of πe as p = f varies over 
primes of good reduction, by comparing these statistics to the corresponding statistics 
for various candidate subgroups of GL2(Fe). Not every subgroup of GL2(Fe) can arise 
as the image of ρE , since, for example, im ρE must contain matrices with ever possible 
nonzero determinant (as p varies, det πe will eventually hit every element of F∗).e 

For f = 3 there are, up to conjugacy, 8 candidate subgroups G of GL2(Fe) for the 
image of ρE . These  are  listed  in  Table  1,  and  can also  be  found  in   the Sage worksheet
18.783 Problem Set 5 Problem 2.sagews.
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Table 1. Candidates for the image of ρE in GL2(F3). 

(a)	 The determinant det A, trace tr A, and the multiplicative order |A| of a matrix in 
GL2(Fe) are all invariant under conjugation. Show that the pair (det A, tr A) does 
not determine the conjugacy class of A in GL2(F3), but then prove that the triple 
(det A, tr A, |A|) does determine the conjugacy class of A in GL2(F3). 
Thus we can get more information about πe if, in addition to computing its trace, 
we also compute its multiplicative order in the ring End(Ep[f]). 

(b)	 Devise and prove a criterion for computing the order of π2 in GL2(F2) based on 
2the number of roots the cubic f(x) has in Fp, where y = f(x) is the Weierstrass 

equation for E. 

(c)	 Modify the function trace mod that was used in our implementation of Schoof’s 
algorithm in Lecture 9 (which can be  found  in the Sage worksheet 18.783 Lecture 9-

        Schoof's algorithm.sagews) so that it also
 ) so that it also 

computes  the  order  of  πe and returns both 
the trace te and the order |πe| of πe. 
Important: The order of πe must be computed modulo the full division polyno­
mial ψe, not modulo one of its factors. So compute |πe| before computing qe, which 
is the first place where a division-by-zero error could occur, causing h to be replaced 
by a proper factor. Also, be sure to compute |πe| only the first time through the loop 
when you know that h = ψe, don’t accidentally recompute it if the loop repeats. 
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Now address the first part of (a) in a different way: pick an elliptic curve E/Q and 
find two primes p and pi for which π3 ∈ End(Ep[3]) and πi ∈ End(Ep' [3]) have the 3 
same characteristic polynomial but different orders in GL2(F3). 

(d)	 Write a program that, given an elliptic curve E, a prime f, and an upper bound 
N , enumerates the primes p ≤ N distinct from f and for which E has good reduc­
tion, and for each Ep, computes the triple (det πe, tr πe, |πe|). In Sage you can use 
prime range(N+1) to enumerate primes p ≤ N . Keep a count of how often each 
distinct  triple  occurs (use a  dictionary,  as  in  the  group  stats  function  in  the  

 Then normalize the counts  by 
dividing by the number of primes p used, yielding a ratio for each triple. 

For f = 3, use your program to provisionally determine the image of ρE for each of 
the ten elliptic curves below, by comparing the statistics computed by your program 
with the corresponding statistics for each of the 8 candidate subgroups of GL2(F3). 
With N around 5000 or 10000 you should be able to easily distinguish among the 
possibilities. The  curves  below  are  also  listed  in  the

2 3	 2y = x + x	 y = x3 + 1 
2	 2 3y = x3 + 432	 y = x + x + 1 
2	 2y = x3 + 21x + 26	 y = x3 − 112x + 784 
2y = x3 − 3915x + 113670 y2 = x3 + 4752x + 127872 
2	 2y = x3 + 5805x − 285714 y = x3 + 652509x − 621544482 

(e)	 Note that if a given triple (det πe, tr πe, |pie|) occurs for some Ep but does not occur in 
a candidate subgroup G ⊂ GL(Fe), you can immediately rule out G as a possibility 
for the image of ρE . Analyze the 8 candidate subgroups in Table 1 to find a pair of 
triples that arise in GL2(F3) but do not both arise in any of its proper subgroups. 
If for a given curve E/Q you can find both of these triples for some Ep1 and Ep2 , 
then you have unconditionally proved that ρE is surjective for f = 3. 

Use this to devise an algorithm that attempts to prove ρE is surjective for f = 3. 
Your algorithm should return true as soon as it can determine im ρE = GL2(F3) 
(this should happen quite quickly, if it is true). If this fails to happen after computing 
triples for Ep for every prime up to, say, 10000, then your algorithm should give up 
and return false. You can think of this as a Monte Carlo algorithm with one-sided 
error: the “randomness” comes from the assumption that each πe is uniformly and 
independently distributed over the image of ρE as p varies. If your program returns 
true, then ρE is definitely surjective; if it returns false it is almost certainly not 
surjective, but there is a small probability of error. 

Using ZZ.random element(-100,100), generate random elliptic curves E/Q of 
the form y2 = x3 + Ax + B, with A and B uniformly distributed over the interval 
[−100, 100]. Excluding cases where AB(A3 + 27B2) = 0, use your program to test 
whether the mod-3 Galois representation ρE is surjective or not. List five curves for 
which your program returns false, and provisionally identify the image of ρE in 
each such case as in part 3 above (you may need to test a few thousand curves to 
achieve this). 
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Problem 2. Schoof’s algorithm (50 points) 

In this problem you will analyze the complexity of Schoof’s algorithm, as described in 
Lecture 9 (Algorithms 9.1 and 9.3) and implemented in the Sage

. In your complexity bounds, use M(m) to denote
the complexity of multiplying two m-bit integers. You may wish to recall that the complexity 
of multiplying polynomials in Fp[x] of degree d is O(M(d log p)), provided that log d = 
O(log p) (in Schoof’s algorithm, f = O(log p), so this certainly applies). Under the

 same assumption, the complexity of inverting a polynomial of degree O(d) modulo 
a polynomial of degree d is O(M(d log p) log d). 

(a)	 Analyze the time complexity of computing te as described in Algorithm 9.3 of the 
lecture notes and implemented in the trace mod function in the worksheet. Give 
separate bounds for each of the four non-trivial steps in Algorithm 9.3 as well as 
overall bounds for the entire algorithm. Express your bounds in terms of f and 
n = log p, using M(m) to denote the cost of multiplying two m-bit integers. 

(b)	 Analyze the total time complexity of Schoof’s algorithm, as described in Algo­
rithm 9.1 of the lectures notes and implemented in the Schoof function of  

 Worksheet 18.783 Lecture 9- Schoof's algorithm.sagews ,  as  a function of n = log p. 
Give your answer in three forms, first using M(m) to express the cost of multiplying
 m-bit integers, then after plugging in the näıve bound M(m) = O(m2) or the
 Schönhage-Strassen bound for FFT-based multiplication M(m) = O(m log m log log m). 

(c)	 In your answer to part (a), you should have found that the time complexity bound 
for one particular step is strictly worse than any of the other steps of Algorithm 9.3. 
Explain how to modify Algorithm 9.3 so that this step no longer strictly dominates 
the asymptotic running time. 

(d)	 Revise your time and space complexity estimates in part (b) to reflect part (c). 

(e)	 Analyze the space complexity of Schoof’s algorithm as a function of n, both before 
and after your optimization in part (c). 

Problem 3. A Las Vegas algorithm to compute E(Fp). (50 points) 

Let E/Fp be an elliptic curve over a finite field Fp of prime order p. In this problem you 
will use the extended discrete logarithm to design (but need not implement) a Las Vegas 
algorithm to determine the structure of E(Fp) as a sum of two cyclic groups 

E(Fp) Z/N1Z ⊕ Z/N2Z, 

with N1|N2. We will assume that the group order N has already been computed, either 
by Schoof’s algorithm or by the Las Vegas algorithm from Problem Set 3. 

Our strategy is to determine the structure of the f-Sylow subgroups of E(Fp) for each 
prime f dividing N . Recall that an f-Sylow subgroup is a maximal f-group (a group in 
which the order of every element is a power of f), and in an abelian group, there is a 
just one f-Sylow subgroup and it contains every element whose order is a power of f. If 
f divides N but f2 does not, then the f-Sylow subgroup is obviously isomorphic to Z/fZ, 
so we only need to consider primes whose square divides N . Furthermore, even if f2 does 
divide N , unless f divides p − 1, the f-Sylow subgroup will still be cyclic: 
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(a)	 Prove that if the f-Sylow subgroup of E(Fp) is not cyclic then p ≡ 1 mod f. 

This yields the following high-level algorithm to compute N1 and N2, given N . 

1. Compute the prime factorization N . 

2. Set N1 = 1 and N2 = 1, and for each maximal prime power fe dividing N : 

(a) If e = 1 or f does not divide p − 1, then set N2 = feN2 and continue. 
(b) Otherwise, compute the structure Z/fe1 Z⊕Z/fe2 Z of the f-Sylow subgroup of 

E(Fp) as described below, with e1 ≤ e2, and set N1 = fe1 N2 and N2 = fe2 N2. 

3. Output N1 and N2 

All we need now is an algorithm to compute the f-Sylow subgroup Ge of E(Fp), 
given the orders fe and N of Ge and E(Fp), respectively. Our strategy is to first pick 
two random points P1, P2 ∈ Ge, by generating random points in E(Fp) and multiplying 
them by N/fe . We hope that these points generate Ge. Next, we reduce them to what 
we hope is a basis for Ge, that is, points Q1 and Q2 such that Ge (Q1) ⊕ (Q2). We 
then have Ge Z/fe1 Z ⊕ Z/fe2 Z where fe1 = |Q1|, fe2 = |Q2|. Note that we can quickly 
compute the order of any element of Ge, since it must be a power of f. Provided that 
we know the points Q1 and Q2 are independent (meaning that (Q1, Q2) (Q1) ⊕ (Q2)), 
in order to verify that we actually have computed a basis for Ge and not some proper 
subgroup, we just need to check that e1 + e2 = e. If this does not hold, we try again 
with two new random points P1 and P2; eventually we must succeed. 

Your job is to flesh out this strategy and analyze the resulting algorithm. We first 
recall the definition of the extended discrete logarithm given in Lecture 9. 

Definition. For elements α and β of a finite group G, the extended discrete logarithm 
of β with respect to α, denoted DL ∗ (α, β), is the pair of positive integers (x, y) with 
αx = βy, where y is minimal subject to βy ∈ (α), and x = logα β

y; or in additive 
notation, xα = yβ with y minimal subject to yβ ∈ (α). 

(b)	 Prove each of the following statements for a finite abelian f-group G containing 
elements α and β. 

(i) If	 G has f-rank at most 2 and α and β are random elements uniformly dis­
tributed over the elements of G, then the probability that G = (α, β) is at 
least 3/8. 

(ii) If (x, y) = DL ∗ (α, β) then y is a power of f. 
(iii) For (x, y) = DL ∗ (α, β) the following are equivalent: 

• x = |α| and y = |β|; 
• (α, β) has order |α| · |β|. 
• α and β are independent; 

(iv) If |α| ≥ |β| and (x, y) = DL ∗ (α, β) then y|x and γ = β − (x/y)α and α are 
independent. 
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The key fact is (iv), which tells us that we should order the Pi so that |P1| ≤ |P2|
and then let Q1 = P1 − (x/y)P2 and Q2 = P2, where (x, y) = DL ∗ (P2, P1). If we then 
compute fe1 = |Q1| and fe2 = |Q2|, it follows from (iii) that Ge = (Q1, Q2) if and only 
if e1 + e2 = e. Fact (i) tells that we expect this to occur within less than 3 iterations, 
on average. By (ii), we can compute (x, y) = DL ∗ (P2, P1), by attempting to compute 

2x = logP2 f
iP1 for i = 0, 1, 2, . . . until we succeed, at which point we have y = fi . 

To compute logP2 f
iP1, we use the prime-power case of the Pohlig-Hellman algorithm 

described in Lecture 10 to reduce the problem to a discrete logarithm computation in a 
group of prime order f for which we use the baby-steps giant-steps method. 

(c)	 Prove that in a cyclic group of prime-power order N = fe the complexity of the 
Pohlig-Hellman algorithm is 

√ 
O(e log f log e + e f) 

group operations. Use this to bound the bit-complexity of computing logP2 f
iP1 in 

the f-Sylow subgroup of E(Fp) with order fe . 

(d)	 Write down a high-level description (not a program) of an algorithm to compute the 
structure of the f-Sylow subgroup Ge of E(Fp) in the form Z/fe1 Z ⊕ Z/fe2 Z, given 
N = #E(Fp) and fe = #Ge, and analyze its expected time complexity as a function 
of f, n = log p, and e. 

(e)	 Analyze the total expected time complexity of the algorithm to compute the struc­
ture of E(Fp) in the form Z/N1Z ⊕ Z/N2Z, given N = #E(Fp) (hint: first figure 
out what the worst case is, then analyze that). You can assume that we have a Las 
Vegas algorithm that factors N in subexponential time, meaning it is faster than 
N E for any E > 0. 

Problem 4. Survey 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 
10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = 
“brutal”). Also estimate the amount of time you spent on each problem to the nearest 
half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 

Also, please rate each of the following lectures that you attended, according to the quality 
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material (1=“old hat”, 10=“all new”). 

2There are much better ways to do this (a binary search, for example), but using them won’t improve 
the worst-case complexity of the overall algorithm. 
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Date Lecture Topic Material Presentation Pace Novelty 
3/5 Schoof’s Algorithm 
3/10 Discrete Logarithm Problem 

Please feel free to record any additional comments you have on the problem sets or 
lectures, in particular, ways in which they might be improved. 
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