
18.783 Elliptic Curves Spring 2015
 

Problem Set #4 Due: 03/06/2015
 

Description 

These problems are related to the material covered in Lectures 7-8. Only Problem 5 
requires any significant coding (those who choose to do Problem 5 will probably also 
want to do Problem 3, since it is referenced in Problem 5). 

I have made every effort to proof-read the problems, but there may well be errors 
that I have missed. The first person to spot each error will receive 1-5 points of extra 
credit on their problem set, depending on the severity of the error. 

Instructions: Solve Problem 1, one of Problems 2 and 3, and one of Problems 4 and 5. 
Then complete Problem 6, which is a survey. 

Problem 1 (30 points). A noncommutative endomorphism ring 

Let p = 7, and consider the finite field F 2 , which we may represent explicitly as p

Fp2 c Fp[i]/(i
2 + 1) = {a + bi : a, b ∈ Fp}. 

To create the field F 2 in Sage using this particular representation, use p

F7.<x>=PolynomialRing(GF(7)) 
F49.<i>=GF(49,modulus=xˆ2+1) 

Now consider the elliptic curve E/Fp2 defined by 

2 y = x 3 + (1 + i)x. 

The group of F 2 -rational points on E is isomorphic to Z/6Z ⊕ Z/6Z and is generated p

by the affine points 
P1 = (i, i), P2 = (i + 2, 2i), 

which you can construct in Sage using P1=E(i,i) and P2=E(i+2,2*i). Let πE 

denote the Frobenius endomorphism of E. 

(a)	 Prove that πE = 7 holds in End(E) (hint: this is easy, don’t make it hard). 

Since πE corresponds to an integer in End(E), you might be tempted to conclude that 
End(E) c Z. But this is far from true. 

(b)	 Show that the p-power Frobenius map π of degree p = 7 does not lie in End(E). 

(c)	 Prove that nevertheless End(E) does contain an endomorphism α of degree 7 by 
exhibiting an explicit rational map α : E → E that satisfies α2 = −7. 

(d)	 Now find another endomorphism β that satisfies β2 = −1 (give β explicitly). 

(e)	 Prove that α and β do not commute, but that αβ = −βα holds. 
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Problem 2 (30 points). Isogeny invariants
 

Let E1 and E2 be isogenous elliptic curves over a finite field Fq of characteristic p, 
related by the isogeny α : E1 → E2. Using only material covered in the lecture 
notes, prove the following statements. 

(a)	 Prove that E1[p] c E2[p] (so E1 is supersingular if and only if E2 is supersingular). 

(b)	 Prove that α(E1(Fq)) ⊆ E2(Fq) but that equality need not hold. 

(c)	 Prove that, nevertheless, #E1(Fq) = #E2(Fq) always holds. 

(d)	 Prove that E1(Fq) is not necessarily isomorphic to E2(Fq) (give an explicit example). 

For isogenous elliptic curves E1 and E2 over fields k that are not finite, even when 
#E1(k) and #E2(k) are finite it is not generally true that #E1(k) = #E2(k). As an 

2explicit example, let E1/Q be the elliptic curve defined by y = x3 − 27x + 55350. The 
group E1(Q) is finite and consists of the five points listed below 

E1(Q) = {(51 : ±432 : 1), (−21 : ±216 : 1), (0 : 1 : 0)}. 

(e)	 Use Vélu’s formulas to determine the isogenous curve E2/Q that is related E1 via 
a separable isogeny with kernel E1(Q) (you only need to determine the equation 
for E2, you don’t need to write down the isogeny). Prove that #E2(Q) is finite and 
that #E1(Q)  = #E2(Q). 

Problem 3 (30 points). Fast order algorithms 

Let α be an element of a generic group G, written additively. Let N be a positive integer 
erfor which Nα = 0, and let p e1 · · · p be the prime factorization of N . An algorithm 1 r 

that computes the order of α given N and its prime factorization is known as a fast 
order algorithm. It’s fast because the knowledge of N and its factorization allows the 
algorithm to run in polynomial time (polynomial in n = log N); determining the order 
of α without being given N provably takes exponential time. 

The näıve fast order algorithm given in class is rather inefficient. This is irrelevant in 
the context of computing the order of a point in #E(Fq) with the baby-steps giant-steps 
method; the complexity is dominated by the time to determine N . But this is not the 
case in every application. In this problem you will analyze two more efficient approaches. 

When giving time complexity bounds for generic group algorithms, we simply count 
group operations, since these are assumed to dominate the computation (so integer 
arithmetic costs nothing). Space complexity is measured by counting the maximum 
number of group elements that the algorithm must store simultaneously, but for this 
problem we will just be concerned with time complexity. You may use the fact that the 
maximum number of distinct primes dividing an integer N is bounded by O(n/ log n), 
where n = log N , which follows from the Prime Number Theorem. All your complexity 
bounds should be specified in terms of n. 

(a)	 The fast order algorithm given in class begins by initializing m = N and then for 
each prime pi|N it repeatedly replaces m by m/pi so long as pi|m and (m/pi)α = 0. 
Analyze the time complexity of this algorithm in the worst case, and give separate 
asymptotic bounds for inputs of the form 2k and p1 · · · pk. 
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(b) Consider an alternative algorithm that first computes αi = (N/pei )α for 1 ≤ i ≤ r,i 

and then determines the least di ≥ 0 for which p di αi = 0 by computing the sequence i 

αi, piαi, pi 
2αi, . . . , pi

di αi = 0, 

where each term is obtained from the previous via a scalar multiplication by pi. 
Show that the order of α is i p di . Analyze the time complexity of this algorithm i 
in the worst case, and give separate asymptotic bounds for inputs of the form 2k 

and p1 · · · pk. 

(c)	 Consider a third algorithm that uses a recursive divide-and-conquer strategy. In 
the base case r = 1, so N = pk is a prime power and it computes the sequence 

dα, pα, p2α, . . . , pdα = 0 as above and returns p . For r > 1 it sets s = lr/2J and 
e1 es es+1 erputs N = with N1 = p · · · p and N2 = p · · · p . It then recursively N1N2 1 s s+1 r
 

computes m1 = |N1α| and m2 = |N2α| and outputs m1m2.
 

(i)	 Prove that this algorithm is correct (you may use the fact |α| = gcd(m, |α|)|mα|
that you proved in Problem Set 2). 

(ii)	 Analyze the time complexity of this algorithm in the worst case, and give 
separate asymptotic bounds for inputs of the form 2k and p1 · · · pk. 

Problem 4 (40 points). The probability of f-torsion 

Let f be a prime. In this problem you will determine the probability that a random1 

elliptic curve E/Fp has an Fp-point of order f, where p is either a fixed prime much 
larger than f, or a prime varying over some large interval. Let π = πE be the Frobenius 
endomorphism of E, and let πe ∈ GL2(Fe) denote the matrix corresponding to the action 
of the Frobenius endomorphism of E on the f-torsion subgroup E[f] with respect to some 
chosen basis (here we have identified Fe with Z/fZ). The matrix πe is only defined up 
to conjugacy, since it depends on the choice of basis, but its trace tr πe = tr π mod f 
and det πe = deg π = p mod f are uniquely determined. We will make the heuristic 
assumption that πe is uniformly distributed over GL2(Fe) as E varies over elliptic curves 
defined over Fp and p varies over integers in some large interval (one can prove that the 
distribution of πe converges to the uniform distribution on GL2(Fe) as p → ∞). 

(a)	 Determine the probability that E(Fp)[f] = E[f], both for a fixed p (in which case the 
answer will depend on p mod f), and for p varying over some large interval (assume 
every possible value of p mod f occurs equally often). 

Use your answer to derive a heuristic estimate for the probability that E(Fp) is cyclic, 
for large p, by estimating the probability that E(Fp)[f] = E[f] for all f, assuming 
that these probabilities are independent.2 Use Sage to compute the product of these 
probabilities for primes f bounded by 50, 100, 200, 500, and then given an estimate 
that you believe is accurate to at least 4 decimal places for all sufficiently large p. 

Now test your heuristic estimate using the following Sage script 

1There are several ways to vary the random elliptic curve E/Fp. We will just pick curve coefficients 
A and B at random and ignore the negligible number of cases where the discriminant is 0. 

2This assumption is false, but the extent to which it is false becomes negligible as p → ∞. 
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cnt=0 
for	 i in range(0,1000):
 

p=random_prime(2ˆ20,2ˆ19); F=GF(p)
 
A=F.random_element(); B=F.random_element()
 

if EllipticCurve([A,B]).abelian_group().is_cyclic(): 
cnt += 1 

print cnt/1000.0 

In the unlikely event that you stumble upon a singular curve, simply rerun the test. 
Run this script three times (be patient, it may take a few minutes), and compare 
the results to your estimate. 

(b)	 Show that a necessary and sufficient condition for E(Fp)[f] = {0} is 

tr πe ≡ det πe + 1 (mod f). 

(c)	 Under our heuristic assumption, to determine the probability that E(Fp) contains 
a point of order f, we just need to count the matrices πe in GL2(Fe) that satisfy 
this condition. Your task is to derive a combinatorial formula for this probability as 
a rational function in f. Do this by summing over the possible values of det πe, so 
that you can also compute the probability for any fixed value of p, which determines 
det πe ≡ p mod f. For each nonzero value of d = det πe ∈ Fe, you want to count the 
number of matrices in GL2(Fe) that have determinant d and trace d + 1. 

As a warm-up, for f = 3 use Sage to count the number of matrices πe ∈ GL2(F3) 
with trace d + 1 for d = 1 and d = 2. You can then compute the probability of 
f-torsion for a fixed p ≡ 1 mod 3 or p ≡ 2 mod 3, and also the average probability 
for varying p by averaging over the 2 possible values of d = det πe ≡ p mod f. 

You can solve this problem with purely elementary methods, but if you know a 
little representation theory you may find it helpful to consult the character table 
for GL2(Fe) (be sure to list your sources). Assume initially that f is odd, and after 
obtaining your formula, verify that it also works when f = 2. 

(d)	 For f = 3, 5, 7 do the following: Pick two random primes p1, p2 ∈ [229 , 230], with 
p1 ≡ 1 mod f and p2  ≡ 1 mod f, and for each prime generate 1000 random elliptic 
curves E/Fp. Count how often #E(Fp) is divisible by f, and compare this with the 
value predicted by the formulas you derived in part (b). 

Problem 5 (40 points). A Las Vegas algorithm to compute #E(Fp) 

Implement a Las Vegas algorithm to compute #E(Fp), as described in class. Use Sage’s 
built-in functions for generating random points on an elliptic curve, for adding points 
on an elliptic curve, and for performing scalar multiplication, but write your own code 
for performing the baby-steps giant-steps search and the fast order computation. When 
implementing the search, you will want to use a python dictionary to store the baby steps 
— python will automatically create a hash table to facilitate fast lookups (alternatively 
you can do a sort and match yourself, just be sure to avoid a linear search). √ √ 

In the code below, H(p) = [p +1 − 2 p, p +1+2 p] denotes the Hasse interval. The 
following algorithm to compute #E(Fp) was given in class: 
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Input: An elliptic curve E/Fp, where p > 229 is prime. 
Output: The cardinality of E(Fp). 

1. Find a random non-square element d ∈ Fp and use it to compute the equation of 
a quadratic twist E1 of E0 = E over Fp. 

2. Set N0 = N1 = 1 and i = 0 (the index i is used to alternate between E0 and E1). 

3. While neither N0 nor N1 has a unique multiple in H(p): 

(a) Pick a random point P on Ei. 

(b) Use a baby-steps giant-steps search to find a multiple M of |P | in H(p). 

(c) Compute the prime factorization of M using Sage’s factor function. 

(d) Compute m = |P | using any of the fast order algorithms from Problem 3. 

(e) Set Ni = lcm(m, Ni) and set i = 1 − i. 

4. If N0 has a unique multiple M in H(p) then return M , otherwise return 2p+2−M , 
where M is the unique multiple of N1 in H(p). 

Let E be the elliptic curve y2 = x3 − 35x − 98. 

(a)	 Using p = 4657, run your algorithm on E/Fp and record the values of Ni, M , and 
m that are obtained as the algorithm progresses. 

(b)	 For k = 20, 40, 60, 80, pick a random prime p in the interval [2k−1 , 2k] (using Sage’s 
random prime function with the lbound parameter). Record the time it takes for 

2you program to compute E/Fp for the elliptic curve y = x3 + 314159x + 271828 for 
each of these primes and list these timings in a table. 

The timings will vary depending on your exact implementation and the machine you 
are running on, but you should be able to see an O(p1/4) growth rate for large p; the 
k = 20 and k = 40 cases will be too quick too see this, but you should see the times go 
up by a factor of roughly 220/4 = 32 as you move from a 40-bit to a 60-bit and then an 
80-bit prime. As ball park figures to shoot for, the cases k = 20, 40 should both take less 
than a second, the k = 60 case should take a few tens of seconds (more like five seconds 
if your code is tight), and the k = 80 case will take several minutes but should not take 
more than half an hour (it can be done in well under five minutes). If you are not seeing 
O(p1/4) growth it likely means that you are inadvertently doing a linear search of the 
baby steps rather than a table lookup; check your code. 

Now consider the following alternative implementation of the algorithm above. Rather 
than having your baby-steps giant-steps search terminate as soon as it finds a multiple 
M of |P |, have it search the entire Hasse interval so that it finds every multiple M of 
|P | in H(p). If it finds only one such M , then you can immediately proceed to step 4. 
If it finds more than one, then you can let m be the difference of the least two M ’s and 
eliminate steps 3c and 3d. 

(c)	 Prove that this works, implement the modified algorithm, and repeat part (b). 
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Problem 6. Survey 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind­
blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Estimate the 
amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
Problem 5 

Also, please rate each of the following lectures that you attended, according to the quality 
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
2/26 Endomorphism rings 
3/3 Point counting 

Please record any additional comments you have on the problem sets or lectures, in 
particular, ways in which they might be improved. 
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