
18.783 Elliptic Curves Spring 2015

Problem Set #13 Due: 05/14/2015

Description

These problems are related to the material covered in Lectures 23 and 25. As usual,
the first person to spot each non-trivial typo/error will receive 1–3 points of extra credit
(this is an all new problem set for this year, so there are sure to be some typos in it).

Instructions: As this is the last week of class this problem set is shorter than usual and
only worth 50 points. You are only required to solve one of the following five problems.
However, those who wish to do more have the following options:

1. Solve two problems and have this problem set weighted 100 points and your second
worst problem set score divided in half and weighted out of 50 points.

2. Solve three problems and your best score will be counted for this problem set and
the sum of your other two problem scores will replace your score on your second
worst problem set (but only if that helps you).

3. For the truly ambitious, solve all five problems and your best score will counted
for this problem set, and your other four scores will be used to replace your scores
on your second and third worst problem sets (but only to the extent that it helps).

No matter which option you choose, your worst problem set score will be dropped.

Problem 1. Pairing attack on the discrete logarithm problem (50 points)

In the early days of elliptic curve cryptography supersingular curves were initially con-
sidered ideal candidates for discrete logarithm based cryptography (using a prime order
subgroup of the rational points) because for these curves it is easy to determine the group
order (p + 1 over prime fields for p > 3) and there are special techniques to speed up
scalar multiplication. However, supersingular curves were quickly ruled out once it was
discovered by Menezes, Okamato, and Vanstone [2] that one can use the Weil pairing to
reduce the computation of a discrete logarithm in an order N subgroup of E(Fq) to the
computation of a discrete logarithm in a finite field Fqr that contains the group µN ⊆ Fq

of Nth roots of unity. As we saw in Lecture 11, there are subexponential-time algorithms
to solve the discrete logarithm problem in a finite field, whereas no such algorithm is
known for the discrete logarithm problem on an elliptic curve. In general r will be very
large (exponential in log q) and this reduction does not make the problem of computing
discrete logarithms in E(Fq) any easier. But for supersingular curves this is not the case.

Let p > 3 be a prime, let E/Fp be a supersingular curve, let N >
√
p be a prime

dividing p+ 1, and let µN denote the multiplicative group of Nth roots of unity in Fp.

(a) Prove that µN ⊆ F×
p2

.

(b) Prove that #E(Fp2) = (p+ 1)2 and E[N ] ⊆ E(Fp2).

Let P ∈ E(Fp) be a point of order N , and let Q ∈ 〈P 〉. Consider the following
algorithm Las Vegas algorithm to compute logP Q:
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1. Generate a random point R ∈ E(Fp2) and compute S = mR, where m = (p+1)/N .

2. Compute a = eN (S, P ), and if a = 1 then return to step 1.

3. Compute b = eN (S,Q).

4. Compute loga b in F×
p2

and output the result.

(c) Prove that the expected number of times the algorithm executes step 1 is 1 + o(1).

(d) Prove that the algorithm correctly outputs logP Q.

The expected running time the algorithm is thus completely dominated by the time
to compute loga b in F×

p2
, which can heuristically be accomplished in L[1/3, c] time.

Let N = 1014 + 2367 (which is prime), let p = 2N 1 (also prime), and let E/Fp be
the elliptic curve y2 3

−
= x − 35x− 98 (which is supersingular). Viewing Fq as integers in

[0, q− 1], choose P0 ∈ E(Fq) so that x(P0) is the least integer greater than your student
ID and y(P0) is minimal, and let P = 2P0. Then choose Q0 ∈ E(Fq) so that x(Q0)
is the least integer greater than twice your student ID and y(Q0) is minimal, and let
Q = 2Q0. Then both P and Q lie in E[N ] and we can apply the above algorithm to
compute logP Q, with m = 2. Here are a few tips to help you do this:

• To create the field Fp2 in Sage use F2 = GF(p**2,’z’).

• To generate R use E.change ring(F2).random element().

• To compute eN (S, P ) use S.weil pairing(P.change ring(F2),N).

• To compute loga b use b.log(a).

(e) Compute logP Q. In your answer list the points P0, P,Q0, Q, the values of a and b,
the integer n = loga b, and the running time of your algorithm (which should be
well under a minute). Be sure to check your answer by verifying that nP = Q.

Remark. You should not be particularly impressed by this running time, since you can
easily beat it with a careful implementation of the baby-steps giant-steps or Pollard rho
algorithms. But for larger values of p and N this algorithm will easily outperform any
generic method. Unfortunately Sage does not have a particularly fast implementation
for computing discrete logarithms in non-prime finite fields, so I intentionally chose a
small example.

Problem 2. A fast Las Vegas algorithm to compute E(Fp) (50 points)

Problem 3 of Problem Set 5 gave a Las Vegas algorithm to compute the structure of the
group E(Fp) ' Z/mZ⊕Z/nZ, but its running time was exp(1 log p+ o(1)), exponential4
in log p. In this problem, following Miller [3], you will develop a much faster algorithm
to compute E(Fp). Strictly speaking it is not polynomial-time because it requires the
factoring the integer d = gcd(#E(Fp), p − 1), but typically d will either be small (in
which case the problem is easy), or it will have only one large prime factor `, in which
case factoring d is easy but computing the structure of E(Fp) with the algorithm from
Problem Set 5 will be very difficult if `2 divides #E(Fp). In any case, this does give a
subexponential-time Las Vegas algorithm, since we can always factor d in subexponential
time using a Las Vegas algorithm (the best proven bound is L[1/2, c], but heuristically
this can be done in time L[1/3, c]).
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(a) Let ` be a prime. Prove that if E[`] ⊆ E(Fp) then `|(p− 1) and `2|#E(Fp).

Let N = #E(Fp) and write N as N = N0N1, where N0 and N1 are relatively prime
and N1 is divisible only by primes ` that divide p−1 and whose square divides N . By part
(a), when computing the structure of E(Fp), we can restrict our attention to E(Fp)[N1].
Consider the following algorithm to compute the structure of E(Fp), which takes as input
the elliptic curve E/Fp, the integers N0 and N1, and the prime factorizations of N1.

1. Generate random points P0, Q0 ∈ E(Fp) and put P := N0P0 and Q := N0Q0.

2. Using the prime factorization of N1, compute s := |P | and t := |Q|.
3. Let r = lcm(s, t) and compute ζ := er(P,Q).

4. Using the prime factorization of N1, compute n := |ζ|.
5. If rn = N1 then put m = rN0 and output Z/mZ⊕ Z/nZ, otherwise go to step 1.

(c) Prove that when the algorithm terminates we have E(Fp) ' Z/mZ⊕ Z/nZ.

(d) Prove that in step 3 we have ζ ∈ F×p .

(e) Prove that the expected number of times the algorithm returns to step 1 is O(1).

(f) Let g ∈ G be an element of a generic group with exponent λ (so λg = 0). Prove that,
given the prime factorization of λ you can compute the order of g using (log λ)1+o(1)

group operations. (You may wish to review Lecture 10 on generic algorithms).

(g) Prove that the running time of the algorithm above is (log p)2+o(1).

Remark. As noted above, this only gives a subexponential-time algorithm to compute
E(Fp) if we are not given the factorization of N1. But it is known that we can do this
in average polynomial time [1], in the following sense: for any prime p, if we pick a
random A,B ∈ Fp the expected time to compute E(Fp) ' Z/mZ ⊕ Z/nZ for the curve
E : y2 = x2 +Ax+B is polynomial in log p.

Problem 3. The Birch and Swinnerton-Dyer Conjecture (50 points)

The goal for this problem is to lead you to a formulation of the (weak) Birch and
Swinnerton-Dyer conjecture. The main difficulty here is not for you to prove a precisely
stated question, but rather for you to formulate a precise question, starting from some
data and some general suggestions. This means that parts of the problem are deliberately
vague; making the questions more precise is part of the problem. Other than part (a),
you are not expected to prove anything; heuristic arguments are fine.

One of the outstanding Millennium Prize Problems is the famous conjecture of Birch
and Swinnerton-Dyer, which concerns the ranks of elliptic curves over Q. Recall from
Lecture 1 that the Mordell-Weil theorem implies

E(Q) = E(Q)tors ⊕ Zr.

As opposed to the torsion subgroup, the rank r of the Mordell-Weil group E(Q) is far
less understood; we do not have a fully general algorithm to compute r, and mathemati-
cians do not even agree on whether r should be bounded or not (so not only can’t we
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prove a conjecture, we don’t even know what the right conjecture is!). However, in the
1960s, Birch and Swinnerton-Dyer carried out computations on the EDSAC computer
at Cambridge University that led them to conjecture a deep relationship between the
L-series of E and the rank r of the Mordell-Weil group. In this problem you will develop
a conjecture and investigate the evidence for it.

Recall from Lecture 25 that the L-series of E/Q is defined by

LE(s) =
∏

L s
p(p
− )−1 =

∏
(1− app−s + χ(p)p−2s+1)−1,

p p

where the Dirichlet character χ(p) = 0 if E has bad reduction at p and 1 otherwise.1

This converges for <(s) > 3/2; however by the modularity theorem, it admits an analytic
continuation to the entire complex plane.

(a) Assume that E is given in affine coordinates by the equation y2 = x3 +Ax+B with
A,B ∈ Z.2 A rational point (x0 : y0 : z0) ∈ E(Q) gives a solution to

y2z ≡ x3 +Axz2 +Bz3 (mod pn),

and hence a point on E mod pn for almost every p. Let Npn denote the number
of solutions to this congruence mod pn. Using Hensel’s lemma (see problem 1 of
Problem Set 3) prove that

Npn = pn−1Np

for all p - ∆(E). Conclude that

Npn Np
lim = ,
n→∞ pn p

N
except for finitely many p. This quantity lim

np
n represents the density of→∞ pn

p-adic points on E. Give a plausible relation with r.

(b) Let S be the set of primes of bad reduction of E. Define

fE(X) =
p

∏ Np
,

p
6∈S

p≤X

What is the relationship between fE(X) and LE(s)?

(c) Consider the elliptic curve3 E with rank 3 given by

y2 = x3 − 82x.

Compute and plot the values of

N
fE(X) =

p

∏
p

p
6∈S

p≤X

1Recall that this assumes a minimal Weierstrass model for E.
2This need not be a minimal Weierstrass model, but you may assume it is if you wish.
3In 1938, this was the highest rank known, due to Billings.
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for X up to at least 106 (or further if you like). What appears to be the asymptotic
growth of this function? Make a plot of your results with an appropriate choice of
scale on the coordinate axes so your answer is apparent. Attach relevant plots in
your solutions.

(d) Repeat part (c) for the following curves of the form

Ei : y2 = x3 − d2ix,

for the values:

di rank

E1 1 0
E2 5 1
E3 34 2
E4 1254 3
E5 29274 4

Display your final plots (with the appropriate scaling of the axes) together.

(e) Combining your results from parts (b), (c), and (d) above, make a precise conjec-
ture on the relationship between LE(s) and the rank of E. Your conjecture should be
precise enough that different ranks give rise to different behaviors of the L-function.
(Hint: You might need to do more work in (b) in order to give a more precise
relationship – there is a natural interplay between conjecture and computation.)

(f) Choose 5 random elliptic curves with |A|, |B| < 100 and conjecturally assign their
ranks. Note: you can use Sage to check your answer, but you must provide evidence
based upon your work in previous parts to receive full credit.4

Problem 4. Classifying subgroups of GL2(F`) (50 points)

Let E be an elliptic curve defined over Q. Recall that for each integer n > 1, the n-
torsion of E(Q) is a rank 2 (Z/nZ)-module we denote by E[n]. As explained in Problem
Set 5, the action of the absolute Galois group GQ := Gal(Q/Q) on the coordinates of
points gives rise to an action on the set E(Q) that commutes with the group law. Hence
the action of GQ preserves E[n] and gives rise to a linear representation of the absolute
Galois group

ρE,n : GQ → Aut(E[n]) ' GL2(Z/nZ),

which we call the mod-n Galois representation attached to E. In this problem an the
next we are concerned only with the case that n = ` is prime.

In this case, a foundational result in the subject of Galois representations of elliptic
curves is the following theorem of Serre:

Theorem (Serre, 1972). Let E be an elliptic curve over Q which does not have CM.
Then for all but finitely many primes `, the image of the mod-` Galois representation is
surjective:

ρE,`(GQ) = GL2(F`).

4While we do not have a general algorithm to compute the rank of E/Q, for small |A| and |B|, Sage
can easily do so.
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Remark. It is conjectured that for all E/Q without CM we have ρE,` = GL2(F`) for
all ` > 37. There has been some recent progress in proving this, but it remains a major
open problem.

A key component of the proof of this theorem is understanding the maximal sub-
groups of GL2(F`) In order to discuss subgroups of GL2(F`) in a basis-free manner, it is
often convenient to write GL(V ) where V is a 2-dimensional vector space over F` and
GL(V ) denotes its group of automorphisms. In this problem you will give a complete
classification of the maximal subgroups of GL2(V ).

Let L1 and L2 be distinct 1-dimensional subspaces of V , which we can think of as
lines through the origin in V , and let Cs be the subgroup of GL(V ) that preserves both
L1 and L2 (individually, no swapping allowed).

(a) Show that for ` = 2, the subgroup Cs uniquely determines the lines L1, L2 ⊂ GL(V )
(and hence is equivalent to specifying two such lines).

We call such a C a split Cartan subgroup of GL(V ). If we choose a basis for V
compatible with the decomposition V = L1 ⊕ L2, we then have

Cs =

(
∗ 0
0 ∗

)
,

where ∗ indicates any element of F× 2
. From this we see that C` ' F× is an abelian`

group of order (`− 1)2.
As an F`-vector space, F 2 F2; but F 2 also has a multiplicativ

(
e structure,

)
` ' ` ` and so

the action of the multiplicative group F×
`2

on F`2 ' V gives a cyclic subgroup Cns of
GL(V ) isomorphic to F×2 . Such a subgroup Cns is called a non-split Cartan subgroup.

`
We collectively refer to split and non-split Cartan subgroups as Cartan subgroups.

(b) Show that for ` = 2, if we fix a quadratic non-residue ε ∈ F×, then in an appropriate`

basis we have

Cns =

{(
x εy

)
: x, y `x

∈ F , (x, y) = (0, 0)
y

}
.

(c) Show that the intersection of any two distinct Cartan subgroups (either split or
non-split) is the group of scalar matrices Z = ( z 0

0 z ) with z ∈ F×.`

(d) Show that any element s ∈ GL(V ) with ∆(s) = tr(s)2−4 ·det(s) = 0 is contained in
a unique Cartan subgroup, and determine a condition involving ∆(s) that specifies
the type of Cartan. Deduce that the union of all Cartan subgroups of GL(V ) is the
set of elements of order prime to `. (If you are stuck, look at part (h) below.)

(e) Let N denote the normalizer of a Cartan subgroup C in GL(V ), that is all elements
s ∈ GL(V ) such that sCs−1 = C. Show that (N : C) = 2 and give an explicit
description of this group in the split and non-split cases separately.

It is easy to show that the group Z of scalar matrices forms the center of GL(V ).
We define PGL(V ) to be the quotient of GL(V ) by its center, so PGL(V ) := GL(V )/Z.
Let ϕ : GL(V )→ PGL(V ) denote the quotient map.
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(f) Show that if C is a split (resp. non-split) Cartan subgroup, then ϕ(C) ⊂ PGL(V )
is cyclic of order `−1 (resp. `+1). Show that the image in PGL(V ) of a normalizer
of a Cartan subgroup is a dihedral group.5

By part (d) above, it remains to understand the elements of GL(V ) of order divisible
by `. A Borel subgroup B of GL(V ) is the group of automorphisms of V fixing a specified
line (through the origin). A Borel subgroup of GL(V ) has order `(`−1)2. After choosing
an appropriate basis, this has the form

B =

(
∗ ∗
0 ∗

)
.

(g) Show that any element s ∈ GL(V ) of order ` is conjugate to the matrix ( 1 1
0 1 ).

(h) Using the fact that SL(V ) is generated ( 1 1
0 1 ) and ( 1 0

1 1 ), deduce that any subgroup
of GL(V ) of order divisible by ` either lies in a Borel subgroup, or contains SL(V ).

Let k be any field. If H is a finite subgroup of PGL2(k) of order prime to the
characteristic of k that is not cyclic or dihedral, then H is isomorphic to either A4, S4,
or A5. (In the case k = C, this result is well known and these subgroups correspond
to the symmetry groups of the regular polyhedra: tetrahedron, cube/octahedron, and
icosahedron/dodecahedron, respectively.)

(i) Using the above result, prove the classification theorem below.

Theorem (Maximal subgroups of GL2(F`)). Let G be a subgroup of GL2(F`); let H
denote the image of G in PGL2(F`). Then one of the following holds:

1. G has order prime to ` and either:

(i) H is cyclic and G is contained in a Cartan subgroup of GL2(F`);

(ii) H is dihedral and G is contained in the normalizer of a Cartan subgroup C
of GL2(F`) but not in C;

(iii) H is isomorphic to A4, S4 or A5 and we call G exceptional;

2. G has order divisible by ` and either:

(iv) G is contained in a Borel subgroup;

(v) G contains SL2(F`).

Problem 5. Surjectivity of Mod-` Galois Representations (50 points)

This is a continuation of Problem 4, but you don’t need to solve Problem 4 in order
to do this problem, you can assume the classification theorem and any other results
stated or proved in Problem 4. Let ` be an odd prime and let V be a 2-dimensional
F`-vector space, with automorphism group GL(V ), as in the previous problem, and let
ϕ : GL(V ) � PGL(V ) denote the quotient map.

5For this problem, the product of two cyclic groups of order 2 (the Klein group) is a dihedral group.
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(a) Let s be an element of GL(V ) whose order is not divisible by `, let u = tr(s)2/ det(s),
and let r be the order of ϕ(s) in PGL(V ). Prove that u = ζr + ζ−1r + 2, for some
primitive rth root of unity ζr ∈ F×

`2
.

(b) Suppose that we are in case (iii) of the classification theorem, in which G is a
subgroup of GL(V ) whose image in PGL(V ) is isomorphic to A4, S4, or A5. Prove
that for all elements s ∈ G, u = tr(s)2/ det(s) is equal to 4, 0, 1, 2 or satisfies
u2 − 3u+ 1 = 0.

Now we are ready to use this classification to deduce some results about surjectivity
of the mod-` Galois representation

ρE,n : GQ → Aut(E[n]) ' GL(V ),

of an elliptic curve E/Q.

(c) Let G = ρE,`(GQ). Using the Weil pairing, prove that the determinant map G→ F×`
is surjective. Show that the image H of the G in PGL(V ) contains a (normal)
subgroup of index 2. Deduce that if G = GL2(F`) then one of the following is true:

1. G is contained in the normalizer of a Cartan subgroup;

2. G is contained in a Borel subgroup;

3. G is exceptional and H = S4.

Remark. As noted in Problem 4, it is a famous conjecture that for ` > 37, the mod-`
Galois representation is surjective for E/Q without CM. This has been proven in all of
these cases except for G contained in the normalizer of a non-split Cartan.

(d) Prove that any element of the normalizer of a Cartan subgroup that does not lie in
the Cartan subgroup itself has trace 0.

(e) Again let G = ρE,`(GQ). Determine three types of elements (specified by their trace
and determinant) such that if G contains these elements, then G = GL2(F`).

(f) Let E be the elliptic curve
y2 + y = x3 − x2,

which has good reduction outside 11. By considering the Frobenius elements π2 =
ρ`,E(Frob2) and π3 = ρ`,E(Frob3), (and)using your criterion above, show that ρE,` is
surjective for all ` ≥ 13 satisfying 11 = −1.`

Problem 6. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5
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Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

5/7 The Weil pairing

5/12 Modular forms

Finally, if you have any comments about the course as a whole, in particular, things
that you think would improve it in the future, please let me know!
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