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Lecture #7 09/26/2013

In Lecture 6 we proved (most of) Ostrowski’s theorem for number fields, and we saw the
product formula for absolute values on Q. A similar product formula holds for absolute val-
ues on a number field, but in order to state and prove it we need to briefly review/introduce
some standard terminology from algebraic number theory.

7.1 Field norms and traces

Let L/K be a finite field extension of degree n = [L : K]. Then L is an n-dimensional
K-vector space, and each α ∈ L determines a linear operator Tα : L→ L corresponding to
multiplication by α (the linearity of Tα is immediate from the field axioms).

Definition 7.1. The trace TrL/K(α) is the trace of Tα, and the norm NL/K(α) is the
determinant of Tα.1

It follows immediately from this definition that the trace is additive and the norm is mul-
tiplicative, and that both take values in K.

The trace and norm can be computed as the trace and determinant of the matrix of Tα
with respect to a basis, but their values are intrinsic to α and do not depend on a choice of
basis. The Cayley-Hamilton theorem implies that Tα satisfies a characteristic equation

f n
α(x) = x + an 1x+− · · ·+ a1x+ a0 = 0

with coefficients ai ∈ K. We then have

Tr 1)nL/K(α) = −an a0,−1 and NL/K(α) = (−

equivalently, TrL/K(α) andNL/K(α) are the sum and product of the roots of fα, respectively.

These roots need not lie in L, but they certainly lie in K (in fact in the splitting field of fα),
and in any case their sum and product necessarily lie in K.

Note that α satisfies the same characteristic equation as Tα, since Tα is just multiplica-
tion by α, but fα is not necessarily the minimal polynomial gα of α over K (which is also
the minimal polynomial of the operator Tα). We know that gα must divide fα, since the
minimal polynomial always divides the characteristic polynomial, but fα must be a power
of gα. This is easy (and instructive) to prove in the case that L/K is a separable extension,
which includes all the cases of interest to us.2

Theorem 7.2. Let L/K be a separable field extension of degree n, let α ∈ L have minimal
polynomial gα over K and let fα be the characteristic polynomial of Tα Then

f n/d
α = gα ,

where d = [K(α) : K].

1These are also called the relative trace/norm, or the trace/norm from L down to K to emphasize that
they depend on the fields L and K, not just α.

2Recall that separable means that minimal polynomials never have repeated roots. In characteristic zero
every finite extension is separable, and the same holds for finite fields (such fields are said to be perfect).
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Proof. There are exactly n distinct embeddings σ1, . . . , σn of L into K that fix K, and
σ1(α), . . . , σn(α) are precisely the n (not necessarily distinct) roots of fα. This list includes
the d roots of gα, since gα divides fα, and these d roots are distinct, since L/K is separable.
But there are exactly n/d = [L : K(α)] distinct embeddings of L into K that fix K(α), and
each of these also fixes K and is hence one of the σi. It follows that each distinct root of fα
occurs with multiplicity at least n/d, and since fα has at least d distinct roots, the roots of
fα are precisely the roots of gα, each occuring with multiplicity n/d. Both fα and gα are

n/d
monic, so fα = gα .

7.2 Ideal norms

Now let us fix K = Q, so that L is a number field (a finite extension of Q). Recall that the
ring of integers of L consists of the elements in L whose minimal polynomials have integer
coefficients. This subset forms a ring O that is a Dedekind domain, an integral domain in
which every nonzero proper ideal can be uniquely factored into prime ideals (equivalently,
a finitely generated Noetherian ring in which every nonzero prime ideal is maximal), and L
is its fraction field. The ring of integers is a free Z-module of rank n = [L : Q], and we can
pick a basis for L as an n-dimensional Q-vector space that consists of elements of O (such a
basis is called an integral basis). The ring O then consists of all integer linear combinations
of basis elements and can be viewed as an n-dimensional Z-lattice. For proofs of these facts,
see any standard text on algebraic number theory, such as [1].

Definition 7.3. Let a be a nonzero O-ideal. The (ideal) norm Na of a is the cardinality
of the (necessarily finite) ring O/a, equivalently, the index [O : a] of a as a sublattice of the
Z-lattice O.3 The norm of (0) is zero.

Remark 7.4. In a Dedekind domain every nonzero prime ideal is maximal, so for prime
ideals p the ring O/p is actually a field of cardinality Np = pf , for some prime p and positive
integer f called the inertia degree (also residue degree).

While it may not be immediately obvious from the definition, the ideal norm is multi-
plicative (for principal ideals this follows from Theorem 7.5 below). For an algebraic integer
α ∈ L we now have two notions of norm: the field norm NL/ (α) and the ideal norm N(α)Q
of the prinicipal O-ideal generated by α. These are not unrelated.

Theorem 7.5. Let α be an algebraic integer in a number field L. Then N(α) = |NL/ (α)Q |.

Proof. Fix an integral basis B for L. The field norm NL/ (α) is the determinant of theQ
matrix of the linear operator Tα with respect to B. The absolute value of this determinant
is equal to the volume of a fundamental parallelepiped in the Z-lattice corresponding to the
principal ideal (α) as a sublattice of the Z-lattice O generated by B, relative to the volume
of a fundamental parallelepiped in O. But this is precisely the index [O : (α)] = N(α).

3Like the field norm NL/Q, the ideal norm N depends on L, but we typically don’t indicate L in the
notation because N is always applied to ideals, which necessarily exist in the context of a particular ring (in
our case the ring of integers of L). More generally, for any finite separable extension L/K where K is the
fraction field of a Dedekind domain A, the ideal norm is defined as a map from ideals in the integral closure
of A in L to A-ideals. In our setting A = Z is a PID, so we are effectively identifying the Z-ideal (Na) with
the integer Na. See [1, Ch. 4] for more details. Our definition here is also called the absolute norm.
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7.3 Product formula for absolute values on number fields

Ostrowski’s theorem for number fields classifies the absolute values on a number field up to
equivalence. But in order to prove the product formula we need to properly normalize each
absolute value appropriately, which we now do.

Let L be a number field with ring of integers O. For each nonzero prime ideal p in O
we define the absolute value |α|p on L by

|α|p = (Np)−vp(α),

where vp(α) is the exponent of p in the prime factorization of the ideal (α) for nonzero
α ∈ O, and vp(α/β) = vp(α)− vp(β) for any nonzero α, β ∈ O (recall that L is the fraction
field of O). As usual, we let vp(0) =∞ and define (Np)−∞ = 0.

This addresses all the nonarchimedean absolute values of L (by Ostrowski’s theorem),
we now consider the archimedean ones. As a number field of degree n, there are exactly n
distinct embeddings of L into Q, hence into C. But these n embeddings do not necessarily
give rise to n distinct absolute values. Let f be a defining polynomial for L over Q, that is,
the minimal polynomial of a primitive element θ such that L = Q(θ) (such a θ exists, by
the primitive element theorem). Over C, the roots of f are either real (let r be the number
of real roots) or come in complex-conjugate pairs (let s be the number of such pairs). We
then have n = r+2s distinct embeddings of L into C, each sending θ to a different root of f
(the roots are distinct because every finite extension of Q is separable). But there are only
r + s inequivalent archimedean absolute values on L, since complex-conjugate embeddings
yield the same absolute value (|z| = |z̄|).

As with Q, it will be convenient to use the notation | |p to denote archimedean ab-
solute values as well as nonarchimedean ones, and we may refer to the subscript p as an
archimedean or “infinite” prime and write p|∞ to indicate this.4 Using σp to denote the
embedding associated to a real archimedean prime p and σp, σ̄p to denote the conjugate pair
of complex embeddings associated to a complex archimedean prime p, we now define{

|σp(α)| if p is a real archimedean prime,
|α|p =

|σp(α)| · |σ̄p(α)| if p is a complex archimedean prime.

Of course |σp(α)| · |σ̄p(α)| = |σp(α)|2, but it is more illuminating to write it as above.
We now prove the product formula for absolute values on number fields.

Theorem 7.6. Let L be a number field. For every α ∈ L× we have∏
|α|p = 1,

p

where p ranges over all the primes of L (both finite and infinite).

Proof. We first consider the archimedean primes. Let fα be the characteristic polynomial
of the linear operator on the Q-vector space L corresponding to multiplication by α. If
p1, . . . , pr and pr+1, . . . , pr+s are the real and complex archimedean primes of L, then the
n = r + 2s (not nescessarily distinct) roots of fα are precisely

σp1(α), . . . , σpr(α), σpr+1(α), σ̄pr+1(α), . . . , σpr+s(α), σ̄pr+s(α).

4The finite and infinite primes of L are also often referred to as places of L and denoted by v.
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We then have ∏ r

|α|p =
∏
|σpi(α)|

∏s
|σpi(α) α)

i=1 i=r+1

| · |σ̄pi(α)| = |NL/ (Q |,
p|∞

since NL/ (α) is equal to the product of the roots of fQ α.
Now let (α) = aq 1

1 · · · q
at
t be the prime factorization of the principal ideal (α) in the ring

of integers of L. Then

∏ t

|α| ai
p =

∏
(Nqi)

− = N(α)−1 = )
p< i=1

|NL/ (αQ |−1,
∞

by Theorem 7.5, and therefore
∏

p |α|p = 1, as desired.

We now turn to a new topic, the completion of a field with respect to an absolute value.

7.4 Cauchy sequences and convergence

We begin with the usual definitions of convergence and Cauchy sequences, which apply to
any field with an absolute value. Let k be a field equipped with an absolute value ‖ ‖.

Definition 7.7. A sequence (xn) of elements of k converges (to `) if there is an element
` ∈ k such that for every ε > 0 there is a positive integer N such that ‖xn − `‖ < ε for all
n ≥ N . Equivalently, (xn) converges to ` if ‖xn − `‖ → 0 as n→∞.5

The element ` is called the limit of the sequence, and if it exists, it is unique: if (xn)
converges to both ` and `′ then

‖`′ − `‖ = ‖`′ − xn + xn − `‖ ≤ ‖`′ − xn‖+ ‖xn − `‖ = ‖xn − `′‖+ ‖xn − `‖ → 0 + 0 = 0,

so ‖`′ − `‖ = 0, and therefore `′ − ` = 0 and `′ = ` (note that we used ‖ − x‖ = ‖x‖).
Sums and products of convergent sequences behave as expected.

Lemma 7.8. Let (xn) and (yn) be sequences in k that converge to x and y respectively.
Then the sequences (xn + yn) and (xnyn) convege to x+ y and xy respectively.

Proof. Convergence of (xnyn) to xy follows immediately from the multiplicativity of ‖ ‖.
To check (xn + yn), for any ε > 0 pick N so that ‖x− xn‖ < ε/2 and ‖y− yn‖ < ε/2 for all
n ≥ N . Then ‖(xn+yn)− (x+y)‖ ≤ ‖xn−x‖+‖yn−y‖ < ε/2+ ε/2 = ε for all n ≥ N .

We now recall a necessary condition for convergence.

Definition 7.9. A sequence (xn) in k is a Cauchy sequence if for every ε > 0 there exists
a positive integer N such that ‖xm − xn‖ < ε for all m,n ≥ N .

Theorem 7.10. Every convergent sequence is a Cauchy sequence.

Proof. Suppose (xn) is a convergent sequence. For any ε > 0 there is a positive integer N
for which ‖xn − `‖ < ε/2 for all n ≥ N . For all m,n ≥ N we then have

‖xm−xn‖ = ‖xm− `+ `−xn‖ ≤ ‖xm− `‖+‖`−xn‖ = ‖xm− `‖+‖xn− `‖ < ε/2+ ε/2 = ε,

where we have again used ‖ − x‖ = ‖x‖.
5The notation ‖xn − `‖ → 0 refers to convergence in R in the usual sense.
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The converse of Theorem 7.10 is not necessarily true, it depends on the field k.

Definition 7.11. A field k is complete (with respect to ‖ ‖) if every Cauchy sequence in k
converges (to an element of k).

Every field is complete with respect to the trivial absolute value. The field Q is not
complete with respect to the archimedean absolute value | |, but R is; indeed, R can be
(and often is) defined as the smallest field containing Q that is complete with respect to | |,
in other words, R is the completion of Q. In order to formally define the completion of a
field, we define an equivalence relation on sequences.

Definition 7.12. Two sequences (an) and (bn) are equivalent if ‖an − bn‖ → 0 as n→∞.

It is easy to check that this defines an equivalence relation on the set of all sequences in k,
and that any sequence equivalent to a Cauchy sequence is necessarily a Cauchy sequence.
We may use the notation [(xn)] to denote the equivalence class of the sequence (xn).

ˆDefinition 7.13. The completion of k (with respect to ‖ ‖) is the field k whose elements
are equivalence classes of Cauchy sequences in k, where

(1) 0ˆ = [(0k, 0k, 0k, . . .)],k

(2) 1ˆ = [(1k, 1k, 1k, . . .)],k

(3) [(xn)] + [(yn)] = [(xn + yn)] and [(xn)][(yn)] = [(xnyn)].

To verify that that actually defines a field, the only nontrivial thing to check is that
ˆevery nonzero element has a multiplicative inverse. So let [(xn)] be a nonzero element of k.

The Cauchy sequence (xn) must be eventually nonzero (otherwise it would be equivalent to
ˆzero), and if we consider the element [(yn)] ∈ k defined by

yn =

{
x−1n if xn = 0,

0 if xn = 0,

we see that [(xn)][(yn)] = 1, since the sequence (xnyn) is eventually 1.
ˆThe map x 7→ x̂ = [(x, x, x, . . .)] is clearly a ring homomorphism from k to k, and

ˆtherefore a field embedding. We thus view k as an extension of k by identifying k with its
ˆimage in k.

ˆWe now extend the absolute value of k to k by defining

‖[(xn)]‖ = lim
n→∞

‖xn‖.

This limit exists because (‖xn‖) is a Cauchy sequence of real numbers and R is complete,
and we must get the same limit for any Cauchy sequence (yn) equivalent to (xn), so this
definition does not depend on the choice of representative for the equivalence class [(xn)].
Since ‖x̂‖ = ‖x‖ for any x ∈ k, this definition is compatible with our original ‖ ‖.

We now note that any Cauchy sequence (xn) in k can be viewed as a Cauchy sequence
ˆ ˆ ˆ(x̂n) in k, since we view k as a subfield of k, and (x̂n) obviously converges to [(xn)] in k.

ˆThus every Cauchy sequence in k that consists entirely of elements of k converges. But
ˆwhat about other Cauchy sequences in k? To show that these also converge we use the fact

ˆthat k is dense in k.

Definition 7.14. Let S be any subset of a field k with absolute value ‖ ‖. The set S is
dense in k if for every x ∈ k and every ε > 0 there exists y ∈ S such that ‖x− y‖ < ε.
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ˆTheorem 7.15. Let k be a field with absolute value ‖ ‖. Then k is dense in its completion k.

Proof. Let x ∈ k̂ be the equivalence class of the Cauchy sequence (xn) in k. For any ε > 0
there is an xm with the property that ‖xm−xn‖ for all n ≥ m. It follows that

ˆ
‖x− x̂m‖ < ε,

where x̂m ∈ k ⊆ k is just the equivalence class of (xm, xm, xm, . . .).

ˆCorollary 7.16. Every Cauchy sequence in k is equivalent to a Cauchy sequence whose
elements lie in k.

ˆ ˆProof. Let (zn) be a Cauchy sequence in k. Since k is dense in k, for each zn we may
ˆpick xn ∈ k ⊆ k so that ‖zn − xn‖ < 1/n. Then for any ε > 0 we may pick N such that

‖zm − xm‖ < ε/3, ‖zn − xn‖ < ε/3 and ‖zm − zn‖ < ε/3, for all m,n ≥ N . It then follows
from the triangle inequality that ‖xm−xn‖ < ε for all m,n ≥ N , hence (xn) is Cauchy.

ˆCorollary 7.17. The completion k of k is complete. Moreover it is the smallest complete
field containing k in the following sense: any embedding of k in a complete field k′ can be

ˆextended to an embedding of k into k′.

Proof. The first statement follows immediately from Corollary 7.16 and the discussion
above. For the second, if π : k → k′ is an embedding of k into a complete field k′, then we

ˆcan extend π to an embedding of k into k′ by defining

π([(xn)]) = lim π(xn).
n→∞

ˆSuch a limit always exists, since k′ is complete, and the map π : k → k′ is a ring homo-
morphism (hence a field embedding) because taking limits commutes with addition and
multiplication, by Lemma 7.8.

ˆRemark 7.18. We could have defined k more categorically as the field with the universal
ˆproperty that every embedding of k into a complete field can be extended to k. Assuming

ˆit exists, such a k is unique up to a canonical isomorphism (map Cauchy sequences to their
limits), but we still would have to prove existence.

Finally, we note that the absolute value on the completion of k with respect to ‖ ‖ is
nonarchimedean if and only if the absolute value on k is nonarchimedean.

Remark 7.19. Everything we have done here applies more generally to commutative rings.
For example, Zp is the completion of Z with respect to the p-adic absolute value | |p on Z,
as we will see in the next lecture.
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