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20.1 Degree theorem for morphisms of curves

Let us restate the theorem given at the end of the last lecture, which we will now prove.

Theorem 20.1. Let φ : C1 → C2 be a morphism of curves defined over k. Then for each
closed point Q of C2/k,

deg φ∗(Q) = deg φ degQ

Before beginning the proof, let us first show that we can assume without loss of generality
that k is algebraically closed. If the closed point Q is the Gk-orbit {Q1, . . . , Qd}, with

¯d = degQ, after base extension to k we have

deg φ∗(Q) = deg φ∗(Q1 + · · ·+Qd) = deg φ∗(Q1) + · · ·+ deg φ∗(Qd),

since both the degree map and the pullback map φ∗ : Divk̄(C2) → Divk̄(C1) are group
¯homomorphisms. If we assume the theorem holds over k, then every term on the right is

equal to deg φ and the sum is ddeg φ = deg φ degQ.
¯We now prove the theorem assuming k = k, following the approach of [1, III.2].

Proof of Theorem 20.1. Fix Q ∈ C2, and let OQ be its local ring of regular functions. The
set φ−1(Q) is finite because φ is not constant and C1 is an irreducible algebraic set of
dimension one (so all its proper closed subsets are finite). Let P1, . . . , Pn ∈ C1 be the
elements of φ−1(Q), let O1, . . . ,On be the corresponding local rings of regular functions,
and define

n

O =
i=1

Oi.

By Lemma 20.4 below, there exist uniformizers

⋂
t1, . . . , tn for O1, . . .On such that

1 if i = j,
ordPi(tj) =

{
0 otherwise.

The maximal ideals of O are (t1), . . . , (tn) and each nonzero f ∈ O factors uniquely as

f = ute11 · · · t
en
n ,

with u ∈ O× and ei = ordPi(f).
Under the map φ∗ : k(C2)→ k(C1), for any f ∈ OQ we have

ordPi(φ
∗f) = ordPi(f ◦ φ) = ordQ(f) ≥ 0,

thus φ∗(OQ) is a subring of O. If we now let tQ be a uniformizer for OQ, and put t = φ∗tQ
we have

t = φ∗t = ute1 · · · tenQ 1 n

where ei = ordPi(φ
∗tQ) = eφ(Pi). Since t1, . . . , tn are pairwise relatively prime (meaning

that (ti) + (tj) = O for all i = j), by the Chinese remainder theorem we have

n

O/(t) '
⊕

t
=1

O e/( i
i ) (1)

i
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as a direct sum of rings that are also k-vectors spaces (hence k-algebras). To prove the
theorem we will compute the dimension of O(t) in two different ways, corresponding to the
two sides of the equality deg φ∗(Q) = deg φ that we are trying to prove.

On the LHS of the equality we wish to prove, the degree of the divisor φ∗(Q) is

deg φ∗(Q) =
∑

eφ(Pi) degPi =
∑

ei, (2)

since we⊕ ¯have degPi = 1 for k = k. We claim that this is precisely the dimension of
O(t) ' iO

e/(t i
i ) as a k-vector space, which we will prove below.

On the RHS of the equality, after identifying k(C2) with its image φ∗(k(C2)) we have

deg φ = [k(C1) : k(C2)],

which we claim is equal to the rank of O as an OQ-module (OQ is embedded in O via φ∗).
The ring O is an integral domain that is finitely generated as a module over the principal
ideal domain O , so it is torsion free and isomorphic to O⊕r

Q Q for some integer r (by the
structure theorem for modules over PIDs), hence it makes sense to speak of its rank r.

The fields k(C1) and φ∗(k(C2)) are the fraction fields of the rings O and OQ, respectively,
and it follows that the maximal number of elements of O that are linearly independent
over OQ is exactly the same as the maximal number of elements of k(C1) that are linearly
independent over k(C2), which is precisely [k(C1) : k(C2)] = deg φ = d. If we choose a basis
α1, . . . , αd for k(C1) over k(C2) and let e = min ordPi(αj) : 0 i n, 0 j d , then the
functions α /te e

{ ≤ ≤ ≤ ≤ }
1 , . . . , αd/t are regular at all the Pi and therefore lie in O. They are linearly

independent over OQ, thus r ≥ d, and clearly r ≤ d, since any r elements of O ⊆ k(C1) that
are linearly independent over O are also linearly independent over its fraction field k(C2).
We have OQ/(t) ' k, since (t) is a maximal ideal, so dimkO/(t) = r = d = deg φ.

To prove dimkO(t) = deg φ∗ e(Q), by (1) and (2) it suffices to show that dim i
kO/(ti ) = ei.

We claim that for any positive integer n, each function f ∈ O can be written uniquely as

f ≡ a0 + a1ti + · · ·+ an 1t
n−1

− i mod tni ,

with each ai ∈ k. Applying this with n = ei will yield the desired result.
For n = 1 we let a0 = f(Pi) ∈ k. We then have ordPi(f − a0) = ordPi(f − f(Pi)) ≥ 1,

so f ≡ a0 mod ti as desired, and clearly a0 is uniquely determined. We now proceed by
induction on n, assuming that f ≡ g = a +a t +· · · a tn−1 mod tn0 1 i n 1 i i . The ordPi(f−g) n− ≥ ,
so h = t−ni (f−g) is regular at Pi and therefore lies in O (since ordPj (ti) = 0 for j = i). Now
let a = h(P ) ∈ k. Then ord (tn(h− a )) ≥ n+ 1 and we have f ≡ g + a tn mod tn+1

n i Pi i n n as
desired.

The key to the proof of Theorem 20.1 is Lemma 20.3, which gave us the independent
uniformizers t1, . . . , tn we needed. In order to prove the lemma we need a tight form of the
(nonarchimedean) triangle inequality for valuations.

Lemma 20.2 (Triangle equality). Let v : F× → Γ be a valuation on a field F . For any
x, y ∈ F× such that v(x) = v(y) we have v(x+ y) = min((v(x), v(y)).

Proof. Assume v(x) < v(y). By the triangle inequality, v(x + y) ≥ min(v(x), v(y)). If this
is not tight, v(x+ y) > v(x), but then v(x) = v((x+ y)− y) ≥ min(v(x+ y), v(y)) > v(x),
a contradiction.
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We now prove the main lemma we need, which is more generally known as the theorem
of independence of valuations for function fields.

Lemma 20.3 (Independence of valuations). Let P1, . . . , Pn be distinct places of a function
field F . Then there exist t1, . . . , tn so that vi(tj) = δij (Kronecker delta), where vi denotes
the valuation for Pi.

Proof. If n = 1, we can take t1 to be any uniformizer for P1. We now proceed by induction,
assuming that t1, . . . , tn 1 satisfy vi(tj) = δij . It suffices to find t and− n with vn(tn) = 1
vi(tn) = 0 for 0 ≤ i < n. With such a tn, we can then replace each t e

i with ti/tn, where
e = vn(ti), so that vn(vi) = 0 and vi(tj) = δij as required.

If vn(ti) = 0 for 0 ≤ i < n, we can simply pick a uniformizer for Pn and multiply it by
suitable powers of the ti so that this is achieved, so let us assume otherwise. We now pick
s1, . . . , sn 1 in OPn with si 6∈ OPi ; this is possible because none of the OPi contain OPn , by−
Theorem 18.5. Then vn(si) ≥ e0 and vi(si) < 0 for 0 ≤ i < n. By replacing each si with s i

i

for some suitably large ei > 0 we can arrange it so that at each valuation vj , for 0 ≤ j < n,
the value min{ evj(s i e e

i ) :∑0 ≤ i < n} is achieved by a unique s i i
i (possibly the same si for

edifferent v ’s). For s = s i
j i we then have vj(s) < 0 for 0 ≤ j < n, by the triangle equality,

and vn(s) ≥ 0.
Now let t be a uniformizer for OPn , so vn(t) = 1. If vn(s) = 0 then we can replace t by

set for some suitable e so that vi(t) < 0 for 0 ≤ i < n and vn(t) = 1, and if vn(s) > 0 we
can achieve the same goal by replacing t with se + t (again by the triangle equality).

Now let w be the product of t with suitable powers of t1, . . . , tn so that v (w) = 0 for
e

−1 i

0 ≤ i < n. If vn(w) = 0 then apply the same procedure to t + t for some suitably chosen
e > 0 so that this is not the case (we have vn(ti) = 0 for some ti, so this is always possible).
Finally, if vn(w) < 0 then replace w with 1/w so vn(w) > 0. We than have vi(w) = 0 for
0 ≤ i < n and vn(w) > 0.

Now let z = w + 1/t. We have vi(1/t) > 0 for 0 ≤ i < n and vn(1/t) = −1, so by
the triangle equality, vi(z) = 0 for 0 ≤ i < n and vn(z) = −1. For tn = 1/z we then have
vi(tn) = 0 for 0 ≤ i < n and vn(tn) = 1 as desired, and we are done.

Corollary 20.4. Let O1, . . . ,On be distinct discrete valuation rings of a function field
F/k. The ring O = ∩iOi has exactly n nonzero prime ideals (t1), . . . , (tn), each principal
and generated by a uniformizer for Oi. Every nonzero f ∈ O can be uniquely factored as
f = ute11 · · · tenn with u ∈ O× and ei = ordPi(f) ≥ 0.

Proof. The elements t1, . . . , tn given by Lemma 20.3 are uniformizers for O1, . . . ,On, and
it follows that every f ∈ F× can then be written uniquely in the form x = ute11 · · · tenn with
u ∈ O× and ei = ordPi(x). The nonzero elements of O are precisely those for which the ei
are all nonnegative, and the lemma is then clear.

We now note a further corollary of the lemma, which is an analog of the weak approxi-
mation theorem we proved in Lecture 11.

Corollary 20.5 (Weak approximation for function fields). Let P1, . . . , Pn be distinct places
of a function field F/k, and let f1, . . . , fn ∈ F be given. For every positive integer N there
exists f ∈ F such that ordPi(f − fi) > N for 0 ≤ i < n.

Proof. Let t1, . . . , tn be as in Lemma 20.3. As in the proof of Theorem 20.1, we can construct
Laurent polynomials gi ∈ k((ti)) such that gi ≡ fi mod tNi , where the first nonzero term of
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gi is ast
s
i where as = ordPi(f). We then have ordPi(gi−fi) ≥ N , and ordPj (gi) ≥ 0 for j = i

since ordPj (ti) = 0 for j = i, this follows from the triangle inequality. Multiplying each gi
by (t N

1 · · · ti−1ti+1 · · · tn) and summing the results yields the desired function f .

Note that in terms of absolute values, making the valuation ordPi(f − fi) large corre-
sponds to making the corresponding absolute value |f − fi|Pi small. To make the analogy
with Theorem 11.7 more precise, we could construct the completions of FPi at each place Pi
and then the fi given in the theorem would lie in FPi but f would still lie in F . The re-
lationship between F and its completions FPi is then exactly analogous to the relationship
between Q and its completions Qpi .

20.2 Divisors of degree zero

It follows from Theorem 20.1 that the group of principal divisors Princk C is a subgroup of
the group of degree zero divisors Div0

k C, the quotient Div0
k C/Princk C is denoted Pic0

k C.
Equivalently, Pic0

k C is the kernel of the degree map PicC → Z. We then have the exact
sequence

1→ k× → k(C)× → Div0
k C → Pic0

k C → 0.

Up to now all the groups of divisors and divisor classes we have considered have been
infinite, but this is not true of Pic0

k. The case where Pic0
k is trivial is already an interesting

result.

¯Theorem 20.6. Assume k = k. Then C ' P1 if and only if Pic0
k C = {0}.

Proof. The forward implication is easy. Each point P = (a0, a1) ∈ P1 is the zero locus of
the polynomial fP (x0, x1) = a1x0 − a0x1, and if we have a divisor D = nPP we can

nconstruct a corresponding homogeneous rational function f = f P
P . If D has degree zero

then the numerator and denominator of f have the same degree and f is

∑
an element of

k(P1) ' k(C), so D = div f . Thus Divk C = Princk C and Pic0
k

∏
C = 0.

Now let P and Q be distinct points in C(k); such P and Q exist because k is algebraically
closed. Then f = fP /fQ is a non-constant function in C(k) that defines a morphism
(fP : fQ) from C to P1. The polynomials fP and fQ have degree one, and this implies
that the morphism f has degree one and is an isomorphism. To check this, we can use
Theorem 20.1 with Q = 0 and t0 = x/y to compute

deg f = deg f∗(0) = ef (P ) = ordP (f∗t0) = ordP (t0 ◦ f) = ordP (fP /fQ) = 1.

Now let us consider the general case, where k is not necessarily algebraically closed.
We then need to work with closed points, but the forward implication still holds: if C/k is
isomorphic to P1/k then Pic0

k C is trivial; the polynomials fP in the proof are now irreducible
polynomials that may have degree greater than one, but that doesn’t change the argument.

But the converse is more interesting. We can always find closed points P and Q on C/k,
but for the above proof to work we need them to have degree one, otherwise the function
fP /fQ will not be an isomorphism. Equivalently, we need C/k to have two distinct rational
points P and Q; these are closed points of degree one. We already know from earlier in
the course that if C/k has genus 0 and even one rational point then it is isomorphic to
P1/k (and then it has more than two rational points). But if C/k has positive genus it can
happen that C/k has one rational point and Pic0

k C = {0}, but C cannot be isomorphic to
P1, because P1 has genus zero. Indeed, this is exactly what happens for the elliptic curve
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y2 = x3 + 7 over Q, whose only rational point is ∞. So we need to add the hypothesis that
C/k have two distinct rational points in order to get a theorem that works for general k.

Corollary 20.7. Let C/k be a curve with at least two distinct rational points. Then C/k
is isomorphic to P1/k (with the isomorphism defined over k) if and only if Pic0

k C = {0}.

As an interesting consequence, if C has genus greater than zero and at least two rational
points, then Pic0

k C cannot be trivial. The elliptic curve C : y2 = x3 − 1 over k = Q is such
an example, with Pic0

k C of order 2.
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