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¯As usual, k is a perfect field and k is a fixed algebraic closure of k. Recall that an affine
¯ ¯(resp. projective) variety is an irreducible alebraic set in An = An(k) (resp. Pn = Pn(k)).

15.1 Rational maps of affine varieties

Before defining rational maps we want to nail down two points on which we we were inten-
tional vague in the last lecture. We defined a morphism φ : X → Y of varieties X ⊆ Am

and Y ⊆ An as a “map defined by a tuple of polynomials (φ1, . . . , φn).” This definition is
vague in two ways. First, is a morphism a map between two sets X and Y , or is it a tuple
of polynomials? We shall adopt the second view; we still get a function by evaluating the
polynomials at points in X.

Given that we regard φ as a tuple (φ1, . . . , φn), the next question is in which ring do
¯ ¯its components φi lie? Are they elements of k[x1, . . . , xm] or k[X]. The function they

¯define is the same in either case, but we shall regard the φi as elements of k[X]. This
ˆmeans that in order to evaluate φi at a point P X, we need to lift φi = φi + I(X) to

ˆ ∈ ¯
∈

ˆa representative φi k[x1, . . . , xm] and then compute φi(P ). Of course it does not matter
ˆ ˆwhich representative φi we pick; we define φi(P ) to be the value φi(P ) for any/every choice

ˆof φ, and thereby define φ(P ) for P ∈ X (but note that φ(P ) is not defined for any P 6∈ X).
One advantage of this approach is that there is then a one-to-one correspondence between

morphisms and the functions they define. If φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψn) define
ˆ ˆ ¯the same function from X to Y then each of the polynomials φi−ψi in k[x1, . . . , xm] contains

X in its zero locus and therefore lies in the ideal I(X). This implies, by definition, that in
¯ ¯k[X] = k[xi, . . . , xm]/I(X) we have φi = ψi for 1 ≤ i ≤ m and therefore φ = ψ.

¯ ¯We now want to extend these ideas to the function field k(X). Elements of k(X) have
¯the form r = f/g, with f, g ∈ k[X] and g = 0, and are called rational functions (or even

¯just functions), on X, even though they are formally elements of the fraction field of k[X]
¯and typically do not define a function from X to k; indeed, this is precisely the issue we

must now address.
It seems natural to say that for a point P ∈ X we should define r(P ) to be f(P )/g(P )

whenever g(P ) = 0 and call it undefined otherwise. But there is a problem with this
approach: the representation r = f/g is not necessarily unique.1 We also have r = p/q

¯whenever pg = fq holds in k[X] (recall that this is part of the definition of a fraction field,
it is a set of equivalence classes of fractions). The values f(P )/g(P ) and p(P )/q(P ) are
necessarily equal wherever both denominators are nonzero, but it may be that q(P ) = 0 at
points where g(P ) = 0 (and vice versa).

Example 15.1. Consider the the zero locus X of x x 4
1 2 − x3x4 in A (which is in fact a

variety) and the rational function r = x1/x3 = x4/x2. At the point P = (0, 1, 0, 0) ∈ X the
value x1(P )/x3(P ) is not defined, but x4(P )/x2(P ) = 0 is defined, and the reverse occurs
for P = (0, 0, 1, 0) ∈ X. But we can assign a meaningful value to r(P ) at both points; the
only points in X where r is not defined are those with x2 = x3 = 0.

This motivates the following definition.

1 ¯If k[X] is a UFD then we can put r = f/g in lowest terms to get a unique representation. However, the
¯ ¯coordinate ring k[X] is usually not a UFD, even though k[x1, . . . , xm] is. A quotient of a UFD is typically

not a UFD, even when it is an integral domain; consider Z[x]/(x2 + 5), for example.
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¯Definition 15.2. A function r ∈ ¯k(X) is said to be regular at a point P ∈ X if gr ∈ k[X]
¯for some g ∈ k[X] ⊆ k̄(X)2 ¯for which g(P ) = 0 (we then have r = f/g for some f ∈ k[X]).

¯The set of points at which a function r ∈ k(X) is regular form a nonempty open (hence
dense) subset dom(r) of the subspace X: the complement of dom(r) in X is the closed

¯ ¯subset of X defined by the denominator ideal {g ∈ k[X] : gr ∈ k[X]}, which we note is not
the zero ideal, since r = f/g for some nonzero g.3

¯We now associate to r the function from dom(r) to k that maps P to

r(P ) = (f/g)(P ) = f(P )/g(P ),

∈ ¯where g is chosen so that g(P ) = 0 and gr = f k[X]. Now if r is actually an element of
k̄[X], then r is regular at every point in X and we have dom(r) = X. The following lemma
says that the converse holds.

Lemma 15.3. A rational function r ∈ ¯ ¯k(X) lies in k[X] if and only if dom(r) = X.

Proof. The forward implication is clear, and if dom(r) = X then the complement of dom(r)
¯in X is the empty set and the denominator ideal is (1), which implies r ∈ k[X].

Definition 15.4. Let X Am and Y An be affine varieties. We say that a tuple
∈ ¯

⊆ ⊆
(φ1, . . . , φn) with φi k(X) is regular at P ∈ X if the φi are all regular at P . A rational map

→ ∈ ¯φ : X Y is a tuple (φ1, . . . , φn) with φi k(X) such that φ(P ) := (φ1(P ), . . . , φn(P )) ∈ Y
for all points P ∈ X where φ is regular. If φ is regular at every point P ∈ X then we say
that φ is regular.

The set of points where φ is regular form an open subset dom(φ) = ∩i dom(φi) of X.
Thus φ defines a function from dom(φ) to Y , which we may also regard as a partial function
from X to Y . We get a complete function from X to Y precisely when dom(φ) = X, that
is, when φ is regular. This occurs precisely when φ is a morphism.

Theorem 15.5. A rational map of affine varieties is a morphism if and only if it is regular.

Proof. A morphism is clearly a regular rational map. For the converse, apply Lemma 15.3
to each component of φ = (φ1, . . . , φn).

We now want to generalize the categorical equivalence between affine varieties and their
function fields, analogous to what we proved in the last lecture for affine varieties and their
coordinate rings (affine algebras), but with morphisms of varieties replaces by the more
general notion of a rational map. But there is a problem with this. In order to even define
a category of varieties with rational maps, we need to be able to compose rational maps.
But this is not always possible!

Example 15.6. Let X = Y = Z = A2, and let φ : X → Y be the rational map (1/x1, 0)
and let ψ : Y → Z be the rational map (0, 1/x2). Then the image of φ is disjoint from
dom(ψ). There is no rational function that corresponds to the composition of φ and ψ (or
ψ with φ). Even formally, the fractions 1/0 that we get by naively composing φ with ψ are

¯not elements of k(X), and the function defined by the composition of the functions defined
¯by φ and ψ has the empty set as its domain, which is not true of any r ∈ k(X).

2Recall that an integral domain can always be embedded in its fraction field by identifying g with the
¯ ¯equivalence class of g/1, so we assume k[X] ⊆ k(X) henceforth.

3 ¯When restricting our attention to a variety X in An it is simpler to work with ideals in k[X] =
¯ ¯k[x1, . . . , xm]/I(X) rather than k[x1, . . . , xm]. The one-to-one corrsepondence between radical ideals and
closed sets still holds, as does the correspondence between prime ideals and (sub-) varieties.
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To fix this problem we want to restrict our attention to rational maps whose image is
dense in its codomain.

Definition 15.7. A rational map φ : X → Y is dominant if φ(dom(φ)) = Y .

If φ : X → Y and ψ : Y → Z are dominant rational maps then the intersection of
φ(dom(φ)) and dom(ψ) must be nonempty; the complement of dom(ψ) in Y is a proper
closed subset of Y and therefore contains no sets that are dense in Y , including φ(dom(φ)).
It follows that we can always compose dominant rational maps, and since the identity map
is also dominant rational map, we can now speak of the category of affine varieties and
rational maps. Not every morphism is a dominant rational map, but affine varieties and
dominant morphisms form a subcategory of affine varieties and dominant rational maps.
As you will show on the problem set, the closure of the image of a morphism of varieties is
a variety, so one can always make a morphism dominant be restricting its codomain.

We now prove the analog of Theorem 14.8, replacing morphisms with dominant rational
maps, and coordinate rings with function fields. We now use the term function field to

¯refer to any finitely generated extension of k, and we require morphisms of function fields
¯ ¯to fix k (we could also call them k-algebra homomorphisms). Field homomorphisms are

¯always injective, so a morphism of function fields is just a field embedding that fixes k.
¯ ¯Note that the all the interesting function fields F/k are transcendental. If F/k is algebraic

¯then F = k; this corresponds to the function field of a zero-dimensional variety (a point).
¯ ¯Given a function field F generated by elements α1, . . . , αn over k, let R be the k-algebra

generated by α1, . . . , αn in F ; this means that R is equal to the set of all polynomial
expressions in α1, . . . , αn, but there may be algebraic relations between the αi that make
many of these expressions equivalent. In any case, R is isomorphic to the quotient of the

¯polynomial ring k[x1, . . . , xn] by an ideal I corresponding to all the algebraic relations that
exist among the αi. The ring R is an integral domain (since it is contained in a field),
therefore I is a prime ideal that defines a variety X whose coordinate ring is isomorphic
to R and whose function field is isomorphic to F , the fraction field of R.

Theorem 15.8. The following hold:

(i) Every dominant rational map φ : X Y of affine varieties, induces a morphism
∗ ¯ → ¯

→
φ : k(Y ) k(X) of function fields such that φ∗(r) = r ◦ φ.

(ii) Every morphism θ : K → L of function fields induces a dominant rational map of
∗ → ' ¯ ' ¯affine varieties θ : X Y , with K k(Y ) and L k(X), such that the image of

¯θ(r) in k(X) is r ◦ θ∗.

(iii) If φ : X → Y and ψ : Y → Z are dominant rational maps of affine varieties then
(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

As in the analogous Theorem 14.8, to compute r ◦ φ one needs to lift/compose/reduce,
¯that is, pick representatives for φ1, . . . , φn that are rational functions in k(x1, . . . , xm),

¯pick a representative of r in k(y1, . . . , yn), then compose and reduce the numerator and
denominator modulo I(X). The fact that φ is dominant ensures that the denominator of

¯the composition does not lie in I(X), so r ◦ φ is an element of k(X).

Proof. The proofs of parts (i) and (iii) follow the proof of Theorem 14.8 verbatim, with
coordinate rings replaced by function fields, only part (ii) merits further discussion. As

¯ ¯discussed above, we can write K ' k(Y ) and L ' k(X) for some varieties X and Y , and
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an → ¯ ¯y morphism K L induces a morphism k(Y ) → k(Y ) that is compatible with these
¯ ¯isomorphisms, so let us assume θ : k(Y )→ k(X).

As in the proof of Theorem 14.8 we define θ∗ : X → Y by θ∗ = (θ(y1), . . . , θ(yn)), where
¯ ¯we now regard the coordinate functions yi as elements of k(Y ). For any r ∈ k(Y ) we have

r ◦ θ∗ = r̂(θ(y1), . . . , θ(yn)) = θ(r(y1, . . . , yn)) = θ(r).

The fact that r ∈ k̄(Y ) ensures that the denominator of r̂ ∈ k̄[y1, . . . , yn] is not in I(Y ),
so this composition is well defined. The proof that the image of θ∗ actually lies in Y is
the same as in Theorem 14.8: for any f ∈ I(Y ) we have f ◦ θ∗ = θ(f) = 0, so certainly
f(θ∗(P )) = 0 for all P ∈ dom(θ∗). Thus θ∗ is a rational map from X to Y .

But we also need to check that θ∗ is dominant (this is the only new part of the proof).
¯This is equivalent to showing that the only element of k[Y ] that vanishes on the image of θ∗

¯is the zero element, which is in turn equivalent to showing that the only element of k(Y )
that vanishes on the intersection of its domain and the image of θ∗ is the zero element. This
is in turn equivalent to showing that if r ◦ θ∗ = θ(r) vanishes at every point in its domain

¯then r = 0. But the only element of k(X) that vanishes at every point in its domain is the
zero element, and θ is injective, so we are done.

Corollary 15.9. The category of affine varieties with dominant rational maps and the
category of function fields are contravariantly equivalent.

Proof. As in the proof of Corollary 14.9, the only thing left to show is that (φ∗)∗ = φ and
(θ∗)∗ = θ, up to isomorphism, but both follow from Theorem 15.8 and its proof.

Definition 15.10. Two affine varieties X and Y are said to be birationally equivalent if
there exist dominant rational maps φ : X → Y and ψ : Y → X such that (φ ◦ ψ)(P ) = P
for all P ∈ dom(φ ◦ ψ) and (ψ ◦ φ)(P ) = P for all P ∈ dom(ψ ◦ φ).

Corollary 15.11. Two affine varieties are birationally equivalent if and only if their func-
tion fields are isomorphic.

As with morphisms, if φ : X → Y is a rational map of varieties that are defined over k,
we say that φ = (φ1, . . . , φn) is defined over k if the φi all lie in k(X).

Corollary 15.12. Let X and Y be affine varieties defined over k. If φ : X → Y is a
¯dominant rational map defined over k then φ∗ : k(Y ) → k̄(X) restricts to a morphism

k(Y )→ k(X).

15.2 Morphisms and rational maps of projective varieties

We now want to generalize everything we have done for maps between affine varieties to
maps between projective varieties. This is completely straight-forward, we just need to
account for the equivalence relation on Pn.

¯Recall from Lecture 13 that although we defined the function field k(X) of a projective
variety X ⊆ Pn as the function field of any of its non-empty affine parts, we can always
represent r by an element r̂ ∈ k̄(x0, . . . , xn) whose numerator and denominator are homo-
geneous polynomials of the same degree, and for any point P ∈ X where r̂(P ) is defined
(has nonzero denominator), we can unambiguously define r(P ) = r̂(P ).
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¯Definition 15.13. Let X be a projective variety. We say that r ∈ k(X) is regular at a
point P ∈ X if it has a representation r̂ that is defined at P . The set of points P ∈ X
at which r is regular form an open subset of X that we denote dom(r).4 For any point
P ∈ dom(r) we define r(P ) = r̂(P ), where r̂ is chosen so that r̂ is defined at P .

Definition 15.14. Let X ⊆ Pm and Y ⊆ Pn be projective varieties. A rational map
φ : X → ¯Y is an equivalence class of tuples φ = (φ0 : . . . : φn) with φi ∈ k(X) not all zero
such that at any point P ∈ X where all the φi are regular and at least one is nonzero, the
point (φ0(P ) : . . . : φn(P )) lies in Y . The equivalence relation is given by

(φ0 : . . . : φn) = (λφ0 : . . . : λφn)

for any λ ∈ k̄(X)×. We say that φ is regular at P if there is a tuple (λφ0 : . . . : λφn) in its
class with each component regular at P and at least one nonzero at P . The open subset
of X at which φ is regular is denoted dom(φ).

Remark 15.15. We can alternatively represent the rational map φ : X → Y as a tuple
¯of homogeneous polynomials in k[x0, . . . , xm] that all have the same degree and not all of

which lie in I(X). To ensure that the image lies in Y one requires that for all f ∈ I(Y ) we
have f(φ0, . . . , φn) ∈ I(X). The equivalence relation is then (φ0 : . . . : φn) = (ψ0 : . . . : ψn)
if and only if φiψj − φjψi ∈ I(X) for all i.j.

Remark 15.16. One can also define rational maps X → Y where one of X,Y is an affine
variety and the other is a projective variety. When Y is projective the definition is exactly
the same as in the case that both are projective (but we don’t use homegenized functions

¯to represent elements of k(X) when X is affine). When X is projective and Y is affine, a
rational map is no longer an equivalence class of tuples, it is a particular tuple of rational
functions on X. Of course there is still a choice of representation for each rational function
(and the choice may vary with P ), but note that in this case Remark 15.15 no longer applies.

Now that we have defined rational maps for projective varieties we can define morphisms
and dominant rational maps; the definitions are exactly the same as in the affine case, so
we can now state them generically.

Definition 15.17. A morphism is a regular rational map. A rational map is dominant if
its image is dense in its codomain.

The analogs of Theorem 15.8 and Corollary 15.9 both apply to dominant rational maps
between projective varieties. The proofs are exactly the same, modulo the equivalence
relations for projective points and rational maps between projective varieties. Alternatively,
one can simply note that any dominant rational map X → Y of projective varieties restricts
to a dominant rational map between any pair of the nonempty affine parts of X and Y (the
nonempty affine parts of X (resp. Y ) are all dense in X (resp. Y ), and they are all
isomorphic as affine varieties; see Corollary 14.10). Conversely, any dominant rational map
of affine varieties can be extended to a dominant rational map of their projective closures
(but this is not true of morphisms; see Example 15.20 below).

Theorem 15.18. Theorem 15.8 and Corollary 15.9 hold for projective varieties as well as
affine varieties.

4It is clear that dom(r) is open in X; its intersection with each affine patch is an open subset of X.
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Let us now look at a couple of examples.

Example 15.19. Let X ⊆ A2 be the affine variety defined by x2 + y2 = 1, and let P be
the point (−1, 0) ∈ X. The rational map φ : X → A1 defined by

φ(x, y) =

(
y 1− x

=
x+ 1

) (
y

)
sends each point Q = (x, y) ∈ X different from P to the slope of the line PQ. The map φ
is not regular (hence not a morphism), because it is not regular at P , but it is dominant
(even surjective). The rational map φ−1 : A1 → X defined by

1
φ−1(t) =

(
− t2 2t

,
1 + t2 1 + t2

)
is an inverse to φ. Note that φ−1 is also not regular (it is not defined at

√
−1), but it is

dominant (but not surjective). Thus X is birationally equivalent to A1, but not isomorphic
to A1 ¯, as expected. The function fields of X and A1 are both isomorphic to k(t).

Now let us consider the corresponding map of projective varieties. The projective closure
X of X in P2 is defined by x2 + y2 = z2. We now define the rational map ϕ : X → P1 by

ϕ(x : y : z) =

(
y − x y

: 1

)
=

(
z

: 1
x+ z

)
=

(
1 :

y z − x

)
Per Remark 15.15, we could also write ϕ as

ϕ(x : y : z) = (y : x+ z) = (z − x : y)

The first RHS is defined everywhere except (1 : 0 : −1) and the second RHS is defined
everywhere except (1 : 0 : 1), thus ϕ is regular everywhere, hence a morphism.

We also have the rational map ϕ : P1 → X defined by(
s2 − t2 2st 2st s2 + t2

ϕ−1(s : t) = : : 1 = 1 : :
s2 + t2 s2 + t2

) (
s2 − t2 s2 − t2

)
which can also be written as

ϕ−1(s : t) = (s2 − t2 : 2st : s2 + t2).

The map ϕ−1 is regular everywhere, hence a morphism, and the compositions ϕ
1

◦ ϕ−1 and
ϕ− ◦ ϕ are both the identity maps, thus X and P1 are isomorphic.

Example 15.20. Recall the morphism φ : A2 → A2 defined by φ(x, y) = (x, xy) from
Lecture 14, where we noted that the image of φ is not closed (but it is dense in A2, so φ is
dominant). Let us now consider the corresponding rational map ϕ : P2 → P2 defined by

x xy
ϕ(x : y : z) = : : 1 = (xz : xy : z2).

z z2

We might expect ϕ to be a morphism,

(
but this is not

)
the case! It is not regular at (0 : 1 : 0).

This is not an accident. As we will see in the next lecture, morphisms of projective
varieties are proper, and in particular this means that they are closed maps (so unlike the
affine case, the image of a morphism of projective varieties is a variety). But there is clearly
no way to extend the morphism φ : A2 → A2 to a proper morphism ϕ : P2 → P2 (the image
of ϕ in the affine patch z = 0 must be dense but not surjective), and this means that ϕ
cannot be a morphism.
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