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¯As usual, k is a perfect field and k is a fixed algebraic closure of k. Recall that an affine
n ¯= A ¯(resp. projective) variety is an irreducible alebraic set in An (k) (resp. Pn = Pn(k)).

14.1 Affine morphisms

We begin our discussion of maps between varieties with the simplest case, morphisms of
affine varieties.

Definition 14.1. Let X ⊆ Am and Y ⊆ An be affine varieties. A morphism f : X → Y is a
¯map f(P ) := (f1(P ), . . . , fn(P )) defined by polynomials f1, . . . , fn ∈ k[x1, . . . , xm] such that

f(P ) ∈ Y for all points P ∈ X. We may regard f1, . . . , fn as representatives of elements of
¯ ¯the coordinate ring k[X] = k[x1, . . . , xm]/I(X); we are evaluating f1, . . . , fn only at points

in X, so there is no reason to distinguish them modulo the ideal I(X).

As befits their name, morphisms can be composed: if f : X → Y and g : Y → Z are
morphisms of varieties X ⊆ Am, Y ⊆ An, and Z ⊆ Ar, then (g ◦ f) : X → Z is defined by

(g ◦ f)(P ) := g(f(P )) =
(
g1(f1(P ), . . . , fn(P )), . . . , gr(f1(P ), . . . , fn(P )) .

Notice that in order for this composition to actually make sense, we need to pick particular

)
¯representatives g1, . . . , gr ∈ k[y1, . . . , ym] modulo I(Y ) (of course it doesn’t matter which).

¯ ¯ ¯The rings k[x1, . . . , xm] and k[X] are k algebras, so it makes sense to evaluate a polynomial
¯with coefficients in k in either of these rings (depending on our perspective), but it does not

¯ ¯make sense to “evaluate” an element of k[Y ] at elements of k[X]. We also have the identity
morphism f : X → X, which is defined by letting f .1i be the polynomial xi

Thus we have a category whose objects are affine varieties and whose morphisms are (no
surpise) morphisms. Contrary to what you might expect (if you happened to be thinking of
morphisms in the category of groups or rings), the image of a morphism is not necessarily
a variety, or even an algebraic set.

Example 14.2. Consider the morphism f : A2 → A2 defined by f(x1, x2) = (x1, x1x2). Its
image is the entire affine plane except for the points on the x1-axis with x2 = 0. This is not

¯an algebraic set; this is obvious if k = C, and in general, if g(y1, y2) vanishes on the image
¯of f , then for any infinitely many c ∈ k the polynomial h(t) = g(t, c) has infinitely many

zeroes, hence is the zero polynomial, and this implies that g is the zero polynomial. Thus
I(im f) is the zero ideal and the only algebraic set containing im f is all of A2.

On the other hand, if you were thinking of morphisms in the category of topological
spaces (which is the better analogy), then morphisms of varieties behave as expected; indeed,
they are continuous maps (and more), we just need to put the right topology on our varieties.

Definition 14.3. In the Zariski topology on An (resp. Pn), the closed sets are precisely the
algebraic sets. Any algebraic set in An (resp. Pn) then inherits the subspace topology.

1Note that we are using the symbol xi in three different ways: as an indeterminate used to define the
¯ ¯ ¯polynomial ringR = k[x1, . . . , xm], as an element ofR (i.e., a polynomial), and as the function xi : Am(k)→ k

that evaluates the polynomial xi on a given input.
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Let us verify that this actually defines a topology: the empty set and An are algebraic
sets defined by the ideals (1) and (0), respectively (and similarly for Pn), and algebraic sets
are closed under arbitrary intersections (we can take the zero locus of an arbitrary sum of
ideals), and finite unions (we can take the zero locus of a finite product of ideals).2

With a topology in place we can now use words like open, closed, dense, etc., when refer-
ring to subsets of An or Pn, with the understanding that they refer to the Zariski topology.
Note that our definition of the projective closure of an affine variety V embedded in Pn is
consistent with this; we proved last time that the projective closure of V in Pn is a variety
(hence closed), and it is clearly the smallest closed set that contains V : a homogeneous

¯polynomial in k[x0, . . . , xn] vanishes on V in Pn if and only if its dehomogenization vanishes
on V in An.

It should be noted that the Zariski topology is extremely coarse. In A1, for example,
every nonempty open set is the complements of finite sets, and in general every nonempty
open set is dense in An (and in Pn); the same applies in the subspace of a variety. And the
Zariski topology is definitely not a Hausdorff topology; indeed, the intersection of any pair
of nonempty open sets is not only nonempty, it must be dense!

Theorem 14.4. Every morphism f : X
1

→ Y of affine varieties is continuous. That is, the
inverse image f− (Z) of any algebraic subset Z ⊆ Y is an algebraic subset of X.

Proof. Showing that the inverse image of a closed set is closed is the same thing as showing
that the inverse of an open set is open, which is the definition of a continuous map. So
let Z be an algebraic subset of Y defined by the ideal (g1, . . . , gr) (we include generators
for I(Y ) in this list). Then f−1(Z) is the zero locus of g1(f1, . . . , fn), . . . , gr(f1, . . . , fn) (as
compositions of polynomials) in X, hence an algebraic of subset of X.

Remark 14.5. It is not true that every continuous map between affine varieties is a mor-
phism; the coarseness of the Zariski topology simply makes it too easy for a function to be
continuous. The additional requirement that a morphism must satisfy is that it must also
be a rational map, as we will see in the next lecture.

For affine varieties, an isomorphism is a bijective morphism whose inverse is a morphism,
but we will use the more formal definition that applies in any category.

Definition 14.6. We say that two varieties X ' Y are isomorphic if there exist morphisms
f : X → Y and g : Y → X such that both f ◦ g and g ◦ f are the identity morphisms on X
and Y , respectively. In this case we may refer to both f and g as isomorphisms.

Just as not every continuous map is an morphism, not every bicontinuous map (home-
morphism) is an isomorphism. Indeed, not even a bicontinuous morphism is necessarily an
isomorphism.

Example 14.7. Consider the map from A1 to A2 defined by t 7→ (t2, t3). The image of this
map is a variety V (the polynomial y2 − x3 ¯is irreducible in k[x, y], so the principal ideal
(y2 − x3) is prime). Thus we have a morphism f : A1 → V , and it is clearly bijective; the
inverse map can be defined as

1

{
y/x if x = 0,

f− (x, y) =
0 otherwise.

2One needs to check that this also works for projective varieties and homogeneous ideals, but this is
straight-forward; sums and products of homogeneous ideals are again homogeneous ideals and the rest
follows from Problem 2 of Problem Set 6.
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Moreover, f is a closed map (the only closed sets in A1 are points and A1 itself, and these
are all mapped to closed sets in V ), so it is bicontinuous and thus both a morphism and a
homeomorphism. But it is not an isomorphism because its inverse is not a morphism; the
function f−1 cannot be defined as a polynomial map.

The example above shows that two varieties may be isomorphic as topological spaces
without being isomorphic as varieties; this should not be too surprising, the Zariski topology
makes it very easy for varieties to be homoemorphic (indeed, every affine curve is homeo-
morphic to A1). On the other hand, in the example of the twisted cubic (see Lecture 13)
we actually have an isomorphism of affine varieties.

We now come to a very important theorem that gives a one-to-one correspondence
between morphisms of affine varieties φ : X → Y and homomorphisms of their coordinate
rings φ∗ ¯: k[Y ] → k̄[X] (note that the directions of the arrows are reversed). Actually, we
want φ∗ ¯to be more than just a ring homomorphism, we also want it to fix the field k.

¯ ¯A compact way of saying this is to regard k[X] and k[Y ] not as rings, but as algebras
¯ ¯over k, and require φ∗ to be a homomorphism of k-algebras. This means that that φ∗ must

commute with sums and products (in our setting this makes φ∗ a ring homomorphism), and
¯it must fix elements of k.

In order to obtain an actual equivalence of categories, we want to specify objects that
correspond to coordinate rings in a purely algebraic way that does not involve varieties. So

¯consider an arbitrary integral domain R that is also a finitely generated k-algebra; let us
call such an R an affine algebra. If we denote the generators of R by x1, . . . , xn, there is a
canonical ring homomorphism

k̄[x1, . . . , xn]→ R

from the polynomial ring with indeterminates x1, . . . , xn onto R, and the kernel of this
¯homomorphism is an ideal I for which R = k[x1, . . . , xn]/I. The ideal I is prime (since R is

an integral domain), hence a radical ideal. Let V be the variety it defines in An. Then by
¯Hilbert’s Nullstellensatz, we have I = I(V ) (note that here we use that k is algebraically

¯closed). The coordinate ring of V is then k[V ] ' k̄[x1, . . . , xn]/I ' R.
Thus we have a one-to-one correspondence between affine varieties and affine algebras

in which varieties correspond to their coordinate rings and affine algebras correspond to
varieties as described above. By taking the morphisms to be k-algebra homomorphisms, we
can consider the category of affine algebras. In order to prove that the category of affine
varieties is equivalent to the category of affine algebras, we need to understand how their
morphisms correspond.

Theorem 14.8. The following hold:

¯(i) Every φ : X → ¯morphism Y of affine varieties induces a morphism φ∗ : k[Y ] → k[X]
of affine algebras such that φ∗(g) = g ◦ φ.

(ii) Every morphism θ : R→ S of affine algebras induces a morphism θ∗ : X → Y of affine
¯varieties with R ' k[Y ] and S ' ¯ ¯k[X] such that the image of θ(g) in k[X] is g ◦ θ∗.

(iii) If φ : X → Y and ψ : Y → Z are morphisms of affine varieties, then (ψ◦φ)∗ = φ∗◦ψ∗.

Before proving the theorem, let us comment on the notation φ∗(g) = g ◦ φ. In order for
this to make sense, we need to interpret it as follows: given g ∈ ¯ ¯k[Y ] = k[y1, . . . , yn]/I(Y ),
we pick a representative ĝ ∈ k̄[y1, . . . , yn] (so g is the coset ĝ + I(Y )) and then φ∗(g) is the

3

3



¯reduction of the polynomial ĝ ◦ φ = ĝ(φ1, . . . , φn) ∈ k[x1, . . . , xm] modulo I(X) (i.e., its
image under the quotient map). In short, g ◦ φ means lift/compose/reduce.3

The key point is that for any f in I(Y ), the composition f ◦φ yields an element of I(X),
because φ maps points in X to points in Y and f vanishes at points in Y . Thus it does not
matter which lift ĝ we pick and our interpretation of g ◦ φ is well defined.

Proof. We assume throughout that X and Y are varieties in Am and An, respectively.
¯ ¯(i) We first note that the operations of lifting from k[Y ] to k[y1, . . . , yn] and reducing

¯ ¯from k[x1, . . . , xm] to k[X] are both compatible with ring operations, and when lifting or
¯ ¯reducing an element of k it remains fixed. Now if g ∈ k is a constant polynomial, then

g ◦ ¯φ = g, and for any f, g ∈ k[y1, . . . , yn] we have

(f + g) ◦ φ = (f + g)(φ1, . . . , φn) = f(φ1, . . . , φn) + g(φ1, . . . , φn) = (f ◦ φ) + (g ◦ φ)

and
(fg) ◦ φ = (fg)(φ1, . . . , φn) = f(φ1, . . . , φn)g(φ1, . . . , φn) = (f ◦ φ)(g ◦ φ).

∗ ¯Thus φ is a ring homomorphism that fixes k, hence a homomorphism of affine algebras.
(ii) Let θ : R → S be a morphism of affine algebras. As described above, there exist

varieties X and Y for which R ' ¯ ¯k[Y ] and S ' k[X], and any morphism R → S induces
¯ ¯a morphism k[Y ] → k[X] that commutes with these isomorphisms.4 So without loss of

¯generality we assume θ : k[Y ]→ k̄[X] is an affine algebra morphism of coordinate rings. We
now define a morphism θ∗ : X → Y by letting θ∗ = (θ(y1), . . . , θ(yn)), where θ(yi) denotes

¯the image under θ of the image of the polynomial yi in k[Y ] under the quotient map from
¯ ¯k[y1, . . . , yn]. For any g ∈ k[Y ] we have

g ◦ θ∗ = ĝ(θ(y1), . . . , θ(yn)) = θ(g(y1, . . . , yn)) = θ(g),

¯where the middle equality follows from the fact that θ is a ring homomorphism that fixes k.
We also note that for any f ∈ I(Y ) we have f ◦ θ∗ = θ(f) = θ(0) = 0, so f(θ∗(P )) = 0 for
all f ∈ I(Y ) and P ∈ X, which implies that the image of θ∗ lies in Y . Thus θ∗ is indeed a
morphism from X to Y as claimed.

(iii) For any g ∈ k̄[Z] we have

(ψ ◦ φ)∗(g) = g ◦ (ψ ◦ φ) = (g ◦ ψ) ◦ φ = φ∗(g ◦ ψ) = (φ∗(ψ∗(g)) = (φ∗ ◦ ψ∗)(g).

Corollary 14.9. The categories of affine varieties and affine algebras are contravariantly
equivalent.5

Proof. The only thing that remains to be shown is that the two functors arising from (i)
and (ii) of Theorem 14.8 are inverses, that is, we need to show that (φ∗)∗ = φ and (θ∗)∗ = θ,
up to isomorphism.6 The second equality is clear from the statement of the theorem and
the first is clear from its proof.

3 ¯If we view φ1, . . . , φn as elements of k[X], we also need to lift the φi in order to compute g ◦ φ.
4One says that the induced morphism is natural ; more precisely, the functor from the category of function

fields to the category of function fields of varieties is a natural transformation (in fact, a natural isomorphism).
If you think this is just a fancy way of stating the obvious, you are right; but the same phenomenon occurs
in more general situations where it is not always so obvious.

5Contravariantly equivalent categories are also called dual categories; they are also said to be anti-
equivalent, but we won’t use this term.

6Up to isomorphism means that the domains and codmains of the morphisms on either side of the equality
need not be precisely equal, they just need to be isomorphic, and the isomorphisms and the morphisms must
form a commutative diagram; in other words, (φ∗)∗ is naturally isomorphic to φ (and similarly for θ).

4

4



Corollary 14.10. All the nonempty affine parts of a projective variety are isomorphic.

Proof. We proved in Lecture 13 (see Corollary 13.26) that the nonempty affine parts of a
projective variety all have the same coordinate ring (up to isomorphism).

Definition 14.11. If φ = (φ1, . . . , φn) is a morphism of varieties X → Y that are defined
over k, we say that φ is defined over k if φ1, . . . , φn k[Y ]. Equivalently, φ is defined over k
if φσ = (φσ, . . . , φσ) = φ for all σ ∈ G .7

∈
1 n k If φ is an isomorphism defined over k and it has

an inverse isomorphism defined over k, then we say that X and Y are isomorphic over k.

Corollary 14.12. Let X and Y be affine varieties defined over k. If φ : X → Y is a
morphism defined over k then the affine algebra morphism φ∗ ¯: k[Y ]→ k̄[X] restricts to an
affine algebra morphism from k[Y ] to k[X].

Proof. This follows immediately from the definition φ∗(g) = g ◦ φ.
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