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Lecture #10 10/8/2013

In this lecture we lay the groundwork needed to prove the Hasse-Minkowski theorem
for Q, which states that a quadratic form over Q represents 0 if and only if it represents 0
over every completion of Q (as proved by Minkowski). The statement still holds if Q is
replaced by any number field (as proved by Hasse), but we will restrict our attention to Q.

Unless otherwise indicated, we use p througout to denote any prime of Q, including the
archimedean prime p =∞. We begin by defining the Hilbert symbol for p.

10.1 The Hilbert symbol

Definition 10.1. For a, b ∈ Q×p the Hilbert symbol (a, b)p is defined by{
1 ax2 + by2 = 1 has a solution in Qp,

(a, b)p =
−1 otherwise.

It is clear from the definition that the Hilbert symbol is symmetric, and that it only depends
on the images of a and b in Q×p /Q×2p (their square classes). We note that

Q×p /Q×2p '

' Z/2Z if p =∞,
(Z/2Z' )2 if p is odd,

' (Z/2Z)3 if p = 2.

The case p =∞ is clear, since R× = Q× has just two square classes (positive and negative∞
numbers), and the cases with p < ∞ were proved in Problem Set 4. Thus the Hilbert
symbol can be viewed as a map (Q×/Q×2)× (Q×/Q×2)→ {±1} of finite sets.

We say that a solution (x0, . . . , xn) to a homogeneous polynomial equation over Qp is
primitive if all of its elements lie in Zp and at least one lies in Z×p . The following lemma
gives several equivalent definitions of the Hilbert symbol.

Lemma 10.2. For any a, b ∈ Q×p , the following are equivalent:

(i) (a, b)p = 1.

(ii) The quadratic form z2 − ax2 − by2 represents 0.

(iii) The equation ax2 + by2 = z2 has a primitive solution.

(iv) a ∈ Qp is the norm of an element in Qp(
√
b).

Proof. (i)⇒(ii) is immediate (let z = 1). The reverse implication is clear if z2−ax2−by2 = 0
represents 0 with z nonzero (divide by z2), and otherwise the non-degenerate quadratic form
ax2 + by2 represents 0, hence it represents every element of Qp including 1, so (ii)⇒(i).

To show (ii)⇒(iii), multiply through by pr, for a suitable integer r, and rearrange terms.
The reverse implication (iii)⇒(ii) is immediate.

If b is square then Qp(
√
b) = Qp and N(a) = a so (iv) holds, and the form z2 − by2

represents 0, hence √every element of Qp including ax20 for any x0, so (ii) holds. If b is not
square then N(z+y b) = z2 (

√
−by2. If a is a norm in Q b) then z2 represen

2 − ax2
−ax2−by2 ts 0

(set x = 1), and if z − by2 represents 0 then dividing by x2 and adding a to both
sides shows that a is a norm. So (ii)⇔(iv).
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Corollary 10.3. For all a, b, c ∈ Q×p , the following hold:

(i) (1, c)p = 1.

(ii) (−c, c)p = 1.

(iii) (a, c)p = 1 =⇒ (a, c)p(b, c)p = (ab, c)p.

(iv) (c, c)p = (−1, c)p.

Proof. Let N denote the norm map from Qp(
√
c) to Qp. For (i) we have N(1) = 1. For (ii),

−c = N(−c) for c ∈ Q×2 and −c = N(
√
c) otherwise. For (iii), If a and b are both norms

in Q(
√
c), then so is ab, by the multiplicativity of the norm map; conversely, if a and ab are

both norms, so is 1/a, as is (1/a)ab = b. Thus if (a, c)p = 1, then (b, c)p = 1 if and only if
(ab, c)p = 1, which implies (a, c)p(b, c)p = (ab, c)p. For (iv), (−c, c)p = 1 by (ii), so by (iii)
we have (c, c)p = (−c, c)p(c, c)p = (−c2, c)p = (−1, c)p.

Theorem 10.4. (a, b) = −1 if and only if a, b < 0∞

Proof. We can assume a, b ∈ {±1}, since {±1} is a complete set of representatives for
R×/R×2. If either a or b is 1 then (√a, b) = 1, by Corollary 10.3.(i), and (−1,−1) =∞ −1,∞
since −1 is not a norm in C = Q (∞ −1).

Lemma 10.5. If p is odd, then (u, v)p = 1 for all u, v ∈ Z×p .

Proof. Recall from Lecture 3 (or the Chevalley-Warning theorem on problem set 2) that
every plane projective conic over Fp has a rational point, so we can find a non-trivial solution
to z2 − ux2 − vy2 = 0 modulo p. If we then fix two of x, y, z so that the third is nonzero,
Hensel’s lemma gives a solution over Zp.

Remark 10.6. Lemma 10.5 does not hold for p = 2; for example, (3, 3)2 = −1.

Theorem 10.7. Let p be an odd prime, and write a, b ∈ Q×p as a = pαu and b = pβv, with
α, β ∈ Z and u, v ∈ Z×p . Then

(a, b)p = (−
p

1)αβ
−1
2

( βu

p

) (
v

p

)α
,

where (x x mod p) denotes the Legendre symbol ( ).p p

Proof. Since (a, b)p depends only on the square classes of a and b, we assume α, β ∈ {0, 1}.
Case α = 0, β = 0: We have (u, v)p = 1, by Lemma 10.5, which agrees with the formula.
Case α = 1, β = 0: We need to show that (pu, v)p = (v ). Since (u 1

p
− , v)p = 1, we have

(pu, v)p = (pu, v)p(u
−1, v)p = (p, v)p, by Corollary 10.3.(iii). If v is a square then we have

(p, v)p = (p, 1)p = (1, p)p = 1 = (v ). If v is not a square then z2−px2−vy2 = 0 has no non-p
trivial solutions modulo p, hence no primitive solutions. This implies v

p−1

Case α = 1, β = 1: We must show (pu, pv)
(
u

p = (−1) 2
p

lary 10.3 we have

)( (p, v)p
v
p

) = −1 = ( ).p

. Applying Corol-

(pu, pv)p = (pu, pv)p(−pv, pv)p = (−p2uv, pv)p = (−uv, pv)p = (pv,−uv)p

Applying the formula in the case α = 1, β = 0 already proved, we have

(pv,−uv)p =

(
−uv
p

)
1

=

(
−
p

)(
u

p

)(
v

p

)
u

= −
p−1

( 1) 2

(
p

)(
v

p

)
.
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Lemma 10.8. Let u, v ∈ Z×. The equations z2 − ux2 − vy2 = 0 and z2 − 2ux2 2
2 − vy = 0

have primitive solutions over Z2 if and only if they have primitive solutions modulo 8.

Proof. Without loss of generality we can assume that u and v are odd integers, since every
square class in Z×2 /Z

×2
2 is represented by an odd integer (in fact one can assume u, v ∈

{±1,±5}) The necessity of having a primitive solution modulo 8 is clear. To prove sufficiency
we apply the strong form of Hensel’s lemma proved in Problem Set 4. In both cases, if we
have a non-trivial solution (x0, y0, z0) modulo 8 we can fix two of x0, y0, z0 to obtain a
quadratic polynomial f(w) over Z2 and w0 ∈ Z×2 that satisfies v2(f(w0)) = 3 > 2 =
2v2(f

′(w0)). In the case of the second equation, note that a primitive solution (x0, y0, z0)
modulo 8 must have y0 or z0 odd; if not, then z20 and vy20, and therefore 2ux20, are divisible
by 4, but this means x0 is also divisible by 2, which contradicts the primitivity of (x0, y0, z0).
Lifting w0 to a root of f(w) over Z2 yields a solution to the original equation.

Theorem 10.9. Write a, b ∈ Q×2 as a = 2αu and b = 2βv with α, β ∈ Z and u, v ∈ Z×2 .
Then

(a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u),

where ε(u) and ω(u) denote the images in Z/2Z of (u− 1)/2 and (u2 − 1)/8, respectively.

Proof. Since (a, b)2 only depends on the square classes of a and b, It suffices to verify the
formula for a, b ∈ S, where S = {±1,±3,±2,±6} is a complete set of representatives for
Q×2 /Q

×2
2 . As in the proof of Theorem 10.7, we can use (pu, pv)2 = (pv,−uv)2 to reduce to

the case where one of a, b lies in Z×p . By Lemma 10.8, to compute (a, b)2 with one of a, b

in Z×, it suffices to check for primitive solutions to z2 − ax2 2
2 − by = 0 modulo 8, which

reduces the problem to a finite verification which performed by

We now note the following corollary to Theorems 10.4, 10.7, and 10.9.

Corollary 10.10. The Hilbert symbol (a, b)p is a nondegenerate bilinear map. This means
that for all a, b, c ∈ Q×p we have

(a, c)p(b, c)p = (ab, c) and (a, b)p(a, c)p = (a, bc)p,

and that for every non-square c we have (b, c)p = −1 for some b.

Proof. Both statements are clear for p = ∞ (there are only 2 square classes and 4 combi-
p−1

nations to check). For p odd, let c = pγw and fix ε = (−1)γ 2 . Then for a = pαu and
b = pβv, we have

γ α γ βv
( c) α u w β w
a, p(b, c)p = ε

(
p

) (
p

)
ε

(
p

) (
p

γ α+β

)
= εα+β

=

(
uv

(
w

p p

(ab, c) .

) )
p

To verify non-degeneracy, we note that if c is not square than either γ = 1 or (w ) =p −1. If
γγ = 1 we can choose b = v with (v ) = 1, so that (b, c)p = (v ) = 1. If γ = 0, then ε = 1p p

and (w
− −

) =p −1, so withb = p we have (b, c)p = (w ) =p −1.
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For p = 2, we have

(a, c) (b, c) = (−1)ε(u)ε(w)+αω(w)+γω(u)(−1)ε(v)ε(w)+βω(w)+γω(v)2 2

= (−1)(ε(u)+ε(v))ε(w)+(α+β)ω(w)+γ(ω(u)+ω(v))

= (−1)ε(uv)ε(w)+(α+β)ω(w)+γω(uv)

= (ab, c)2,

where we have used the fact that ε and ω are group homomorphisms from Z×2 to Z/2Z. To
see this, note that the image of ε−1(0) in (Z/4Z)× is {1}, a subgroup of index 2, and the
image of ω−1(0) in (Z/8Z)× is {±1}, which is again a subgroup of index 2.

We now verify non-degeneracy for p = 2. If c is not square then either γ = 1, or one
of ε(w) and ω(w) is nonzero. If γ = 1, then (5, c)2 = −1. If γ = 0 and ω(w) = 1, then
(2, c)2 = −1. If γ = 0 and ω(w) = 0, then we must have ε(w) = 1, so (−1, c)2 = −1.

We now prove Hilbert’s reciprocity law, which may be regarded as a generalization of
quadratic reciprocity.

Theorem 10.11. Let a, b ∈ Q×. Then (a, b)p = 1 for all but finitely many primes p and∏
(a, b)p = 1.

p

Proof. We can assume without loss of generality that a, b ∈ Z, since multiplying each of a
and b by the square of its denominator will not change (a, b)p for any p. The theorem holds
if either a or b is 1, and by the bilinearity of the Hilbert symbol, we can assume that

a, b ∈ {−1} ∪ {q ∈ Z>0 : q is prime}.

The first statement of the theorem is clear, since a, b ∈ Z×p for p < ∞ not equal to a or
b, and (u, v)p = 1 for all u, v ∈ Z×p when p is odd, by Lemma 10.5. To verify the product
formula, we consider 5 cases.

Case 1: a = b = −1. Then (−1,−1) = (−1, 1)∞ − 2 = −1 and (−1,−1)p = 1 for p odd.
Case 2: a = −1 and b is prime. If b = 2 then (1, 1) is a solution to −x2 + 2y2 = 1

over Qp for all p, thus p(−1, 2) = 1. If b is odd, then (
ε

−1, b)p = 1 for p
(b) 1 (b 1)

6∈ {2, b}, while

(−1, b)2 = (−1) and (−1, b)b = (− ), both of which are equal to (b −1) − /2.
Case 3: a and b are

∏
the same prime. Then by Corollary 10.3, (b, b)p = (−1, b)p for all

primes p, and we are in case 2.
Case 4: a = 2 and b is an odd prime. Then (2, b)p = 1 for all p

ω(b) 2 (b2 1)/8

6∈ {2, b}, while

(2, b)2 = (−1) and (2, b)b = ( ), both of which are equal to (−1)p
− .

Case 5: a and b are distinct odd primes. Then (a, b)p = 1 for all p 6∈ {2, a, b}, while

(−1)ε(a)ε(b) if p = 2,

(a, b) a
p =

( b

)( if p = b,
b
)

if p = a.a

Since ε(x) = (x− 1)/2 mod 2, we have∏ a−1 b−1 a b
(a, b)p = ( =

a
p

−1) 2 2

(
b

)( )
1,

by quadratic reciprocity.
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