18.782 Introduction to Arithmetic Geometry Fall 2013
Lecture #10 10/8/2013

In this lecture we lay the groundwork needed to prove the Hasse-Minkowski theorem
for Q, which states that a quadratic form over Q represents 0 if and only if it represents 0
over every completion of Q (as proved by Minkowski). The statement still holds if Q is
replaced by any number field (as proved by Hasse), but we will restrict our attention to Q.

Unless otherwise indicated, we use p througout to denote any prime of Q, including the
archimedean prime p = co. We begin by defining the Hilbert symbol for p.

10.1 The Hilbert symbol
Definition 10.1. For a,b € Q the Hilbert symbol (a,b), is defined by

1 az?® + by? = 1 has a solution in Qp,
(a,b)p = .
—1 otherwise.

It is clear from the definition that the Hilbert symbol is symmetric, and that it only depends
on the images of a and b in Q' / QgQ (their square classes). We note that

~ 7./27 if p = oo,
Q) /Qx? ~ < ~(Z/2Z)? ifpis odd,
~ (Z/27)3 if p=2.

The case p = oo is clear, since R* = QX has just two square classes (positive and negative
numbers), and the cases with p < oo were proved in Problem Set 4. Thus the Hilbert
symbol can be viewed as a map (Q*/Q*?) x (Q*/Q*?) — {£1} of finite sets.

We say that a solution (zo,...,zy) to a homogeneous polynomial equation over Q,, is
primitive if all of its elements lie in Z, and at least one lies in Z;. The following lemma
gives several equivalent definitions of the Hilbert symbol.

Lemma 10.2. For any a,b € Q;, the following are equivalent:
(i) (a,b)p =1.
(i)
(iii) The equation ax® + by? = 22 has a primitive solution.
(iv)
Proof. (i)=(ii) is immediate (let z = 1). The reverse implication is clear if 22 —az?—by? = 0
represents 0 with z nonzero (divide by 22), and otherwise the non-degenerate quadratic form
az? + by? represents 0, hence it represents every element of Q, including 1, so (ii)=-(i).
To show (ii)=-(iii), multiply through by p", for a suitable integer r, and rearrange terms.
The reverse implication (iii)=-(ii) is immediate.
If b is square then Q,(vb) = Q, and N(a) = a so (iv) holds, and the form 2% — by?
represents 0, hence every element of Q, including az? for any z¢, so (ii) holds. If b is not
square then N(z+yvb) = 2% —by?. If a is a norm in Q(v/b) then 22 — az? — by? represents 0

(set z = 1), and if 22 — ax? — by? represents 0 then dividing by x? and adding a to both
sides shows that @ is a norm. So (ii)<(iv). O
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The quadratic form 2% — ax?® — by? represents 0.

v) a € Q, is the norm of an element in Q,(v/b).
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Corollary 10.3. For all a,b,c € Q;, the following hold:

(i) (Le)p=1.

(i) (
(111) (a) C)p =1 = ((17 C)p(bu C)p = (ab) C)p'

(iv) (e,¢)p =(—1,¢)p.
Proof. Let N denote the norm map from Q,(y/c) to Qp. For (i) we have N (1) = 1. For (ii),
—c = N(—c) for ¢ € Q%% and —c = N(4/c) otherwise. For (iii), If @ and b are both norms
in Q(1/c), then so is ab, by the multiplicativity of the norm map; conversely, if a and ab are
both norms, so is 1/a, as is (1/a)ab = b. Thus if (a,c), = 1, then (b,c), = 1 if and only if
(ab, ¢)p, = 1, which implies (a, ¢),(b,c)p = (ab, c),. For (iv), (—¢,¢), = 1 by (ii), so by (iii)
we have (C, C)p = (—C, C)p(cy C)p = (_027 C)P = (_17 C)p' O

—c,c)p = 1.

Theorem 10.4. (a,b)so = —1 if and only if a,b < 0

Proof. We can assume a,b € {£1}, since {£1} is a complete set of representatives for
R /R*2. If either a or b is 1 then (a,b)s = 1, by Corollary 10.3.(i), and (=1, —1)s = —1,
since —1 is not a norm in C = Qx(v/—1). O]

Lemma 10.5. If p is odd, then (u,v), =1 for all u,v € Z;.

Proof. Recall from Lecture 3 (or the Chevalley-Warning theorem on problem set 2) that
every plane projective conic over [F), has a rational point, so we can find a non-trivial solution
to 22 — ux? — vy? = 0 modulo p. If we then fix two of x,v, z so that the third is nonzero,
Hensel’s lemma gives a solution over Z,,. O

Remark 10.6. Lemma 10.5 does not hold for p = 2; for example, (3,3)s = —1.

Theorem 10.7. Let p be an odd prime, and write a,b € Q; as a = p*u and b = pPu, with
a,B €Z and u,v € Z, . Then

o= (3 (5)

T (xm;))dp).

where () denotes the Legendre symbol

Proof. Since (a,b), depends only on the square classes of a and b, we assume «, § € {0,1}.
Case a = 0, 8 = 0: We have (u,v), = 1, by Lemma 10.5, which agrees with the formula.
Case a = 1,8 = 0: We need to show that (pu,v), = (7). Since (ut,v), = 1, we have

pu,v)y = (pu,v)p(u=",v), = (p,v),, by Corollar 3.(1ii). v is a square then we have
( )p ( )p( 1 )p ( )p by Corollary 10.3.(iii). If v i

V)p = = =1=(%). If v is not a square then 2z — pxr® —vy* = 0 has no non-
(p, )p (p 1);0 (1>p)p 1 (Z) Ifoi q 2 p 2 92 0

trivial solutions modulo p, hence no primitive solutions. This implies (p,v), = —1 = (%)
Case a = 1,5 = 1: We must show (pu,pv), = (—1)10%1 (%) (%) Applying Corol-

lary 10.3 we have

(pu, pv)p = (pu, pv)p(—pv, pv)p = (—p*wv, pv)p = (—uw, pv), = (pv, —uv),

Applying the formula in the case a = 1,8 = 0 already proved, we have

o (2)-BOE- () o



Lemma 10.8. Let u,v € Z5. The equations 22 —ux? —vy? =0 and 2? — 2ux® —vy? =0

have primitive solutions over Zs if and only if they have primitive solutions modulo 8.

Proof. Without loss of generality we can assume that u and v are odd integers, since every
square class in ZJ /Z;2 is represented by an odd integer (in fact one can assume u,v €
{£1, £5}) The necessity of having a primitive solution modulo 8 is clear. To prove sufficiency
we apply the strong form of Hensel’s lemma proved in Problem Set 4. In both cases, if we
have a non-trivial solution (xg,yo,20) modulo 8 we can fix two of xg,yo, 20 to obtain a
quadratic polynomial f(w) over Zs and wy € ZJ that satisfies va(f(wp)) = 3 > 2 =
209(f'(wp)). In the case of the second equation, note that a primitive solution (xg, Yo, 20)
modulo 8 must have yy or zg odd; if not, then zg and vyg , and therefore 2u:r:(2), are divisible
by 4, but this means z is also divisible by 2, which contradicts the primitivity of (zo, yo, 20).
Lifting wg to a root of f(w) over Zy yields a solution to the original equation. O

Theorem 10.9. Write a,b € Q) as a = 2%u and b = 2°v with o, B € Z and u,v € Z5.

Then
(a,b)g = (—1)(WeWIFact il

)

where €(u) and w(u) denote the images in Z/2Z of (u — 1)/2 and (u® — 1)/8, respectively.

Proof. Since (a,b)2 only depends on the square classes of a and b, It suffices to verify the
formula for a,b € S, where S = {£1,43,+2,4+6} is a complete set of representatives for
Q5 /Q§<2 As in the proof of Theorem 10.7, we can use (pu,pv)2 = (pv, —uv)z to reduce to
the case where one of a,b lies in Z;. By Lemma 10.8, to compute (a,b)2 with one of a,b
in ZJ, it suffices to check for primitive solutions to 22 — ax? — by? = 0 modulo 8, which
reduces the problem to a finite verification which performed by 18.782 Lecture 10 Sage 0
Worksheet.

We now note the following corollary to Theorems 10.4’ 10.7’ and 10.9.

Corollary 10.10. The Hilbert symbol (a,b), is a nondegenerate bilinear map. This means
that for all a,b,c € Q) we have

((l, C)p(bv C)p = (aba C) and (CL, b)p(aa C)p = (av bC)p,
and that for every non-square ¢ we have (b,c), = —1 for some b.

Proof. Both statements are clear for p = co (there are only 2 square classes and 4 combi-
p

nations to check). For p odd, let ¢ = p?w and fix ¢ = (—1)7 7 .

b = pPu, we have
D GGG
a,c)p(b,c), =% — —) P - —
oo, == (1) (2) < (1) (4
o (s )
p p

= (ab, ¢),.

Then for a = p“u and

To verify non-degeneracy, we note that if ¢ is not square than either v =1 or (%) =-1.1If
7 =1 we can choose b = v with () = —1, so that (b,c)p = (4)Y=—1. Ify=0,thene =1

and (%) = —1, so withb = p we have (b,c), = (£) = —1.

w
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For p = 2, we have

(@, ¢)a(b; )2

[ )e()e(w) Fow () tye(u) (1 yelw)e(w)+fw(w) tyw()

(=
— (- 1)<e<u>+e v))e(w) (ot B (w)+y(w(u) o (v))
(=

) ECt0)e(w) + (@ B (w) + ()

= (ab, ¢)2,

where we have used the fact that € and w are group homomorphisms from ZJ to Z/2Z. To
see this, note that the image of e~1(0) in (Z/4Z)* is {1}, a subgroup of index 2, and the
image of w™1(0) in (Z/8Z)* is {£1}, which is again a subgroup of index 2.

We now verify non-degeneracy for p = 2. If ¢ is not square then either v = 1, or one
of e(w) and w(w) is nonzero. If v = 1, then (5,¢)2 = —1. If ¥y = 0 and w(w) = 1, then
(2,¢)e = —1. If y =0 and w(w) = 0, then we must have e(w) =1, so (—1,¢)y = —1. O

We now prove Hilbert’s reciprocity law, which may be regarded as a generalization of
quadratic reciprocity.

Theorem 10.11. Let a,b € Q*. Then (a,b), =1 for all but finitely many primes p and

H(C% b)p =

p

Proof. We can assume without loss of generality that a,b € Z, since multiplying each of a
and b by the square of its denominator will not change (a, b), for any p. The theorem holds
if either a or b is 1, and by the bilinearity of the Hilbert symbol, we can assume that

a,be {—1}U{q € Z~q : ¢ is prime}.

The first statement of the theorem is clear, since a,b € Z; for p < oo not equal to a or
b, and (u,v), = 1 for all u,v € Z,; when p is odd, by Lemma 10.5. To verify the product
formula, we consider 5 cases.

Case 1: a =b=—1. Then (-1, —1)s = (—=1,—1)2 = —1 and (—1,—1), = 1 for p odd.

Case 2: @ = —1 and b is prime. If b = 2 then (1,1) is a solution to —z? + 2y? = 1
over Q, for all p, thus Hp(—l,Q) = 1. If b is odd, then (—1,b0), = 1 for p & {2,b}, while
(—=1,b)2 = (=1)® and (—1,b), = (%1), both of which are equal to (—1)®=1/2,

Case 3: a and b are the same prime. Then by Corollary 10.3, (b,b), = (—1,b), for all
primes p, and we are in case 2. o

Case 4: a = 2 and b is an odd prime. Then (2,b), = 1 for all p ¢ {2,b}, while
(2,b) = (—=1)“® and (2,b), = (z%)’ both of which are equal to (—1)®*~1/8,

Case 5: a and b are distinct odd primes. Then (a,b), =1 for all p & {2,a, b}, while

De@e®)if p =2,
(a,b)p = ¢ (%) itp=>0,
a)

—~
|

if p=a.
Since €(x) = (z — 1)/2 mod 2, we have

o, = 05 (2) () =1

p

by quadratic reciprocity. ]
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