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ALGEBRAIC SURFACES, LECTURE 8 

LECTURES: ABHINAV KUMAR 

1. Examples 

1.1. Linear systems on P2 . Let P be a linear system (of conics, cubics, etc.) 
on P2 and φ : P2 ��� P ∨ ∼ PN the corresponding rational map. The full linear = 
system of degree k polynomials has dimension N = k+2 − 1. φ may have base 

2 
points: blow them up to get f = φ π : S = P2(r) PN with exceptional divisors ◦ →
corresponding to base points p1, . . . , pr (here, we assume one blowup is sufficient 
to resolve each point). Let mi be the minimal multiplicity of the members of the 
linear system at pi, d the degree of S. Let � be line in P2 , L = π∗�, Ei = π−1(pi). 
We obtain Î ⊂ |dL − miEi| a linear system without base points on S. Assume 
f is an embedding, i.e. it separates points and tangent vectors. Then S � = f(S) 
is a smooth rational surface in PN and Pic (S �) has an orthogonal basis consisting 
of L = π∗� and the Ei with L2 = 1, E2 = −1. The hyperplane section H of S � is� i � 
dL − miEi and the degree of S � is H2 = d2 − mi 

2 . 

Example. The linear system of all conics on P2 gives an embedding j : P2 P5 

with no base points via [x : y : z] �→ [x2 : y2 : z2 : xy : xz : yx]: the image V
→

has 
degree 4 and is called the Veronese surface. It contains no lines, but contains a 
two-dimensional linear system of conics coming from lines on P2 . We can write 
down equations for V in P5 as a determinantal variety, with ⎛ ⎞ 

Z0 Z3 Z5 

(1) rk ⎝ Z3 Z1 Z4 ⎠ = 1 
Z5 Z4 Z2 

i.e. all 2 × 2 minors vanish, i.e. it is cut out by quadratic relations. Projecting 
from a generic point of P5 gives an isomorphism V → V � ⊂ P4 called the Steiner 
surface, while projection from a point of V is a surface S ⊂ P4 of degree 3 
obtained from a linear system of conics passing through a given point on P2 . 
This in turn gives an embedding F1 ⊂ P4, a cubic ruled surface in P4 . 

Proposition 1. The linear system of cubics passing through points p1, . . . , pr, r ≤
6 in general position (no 3 on a line, no 6 on a conic) gives an embedding 
j : Pr = P2(r) → Pd, d = 9 − r. Sd = j(Pr) is a surface of degree d in Pd, called 
a del Pezzo surface of degree d. 
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r = #Ei 0 1 2 3 4 5 6 
#�pi, pj � 0 0 1 3 6 10 15 
# conics 0 0 0 0 0 1 6 

# total lines 0 1 3 6 10 16 27 

Proof. To see this, we need to check that the linear system of cubics through 
p1, . . . , pr separates points and tangent vectors on Pr. Then the system is without 
base points, so by induction the dimension is 9 − r. We only need to check for 
r = 6: to see that it separates points, take x, y ∈ P6 with x =� y, and choose 
pi = π(x), π(y) s.t. x is not on the proper transform of the conic Ci through the 
5 points pj , j = i. There is a unique conic Dijx through x and the points pk for 
k �= i, j. Then Dijx ∩ Dikx = {x} for pk �= {pi, pj , π(x)}. Hence y ∈ Dijx for 
at most one value of j, and there is some Dijx s.t. y /∈ Dijx. Also, if Lij is the 
proper transform of the line joining pi, pj , then y ∈ Lij for at most one value of 
j. So there is a cubic Dijx ∪ Lij passing through x but not j, and j : P6 → P3 is 
injective. Separating tangent vectors follows similarly. � 

Note. The linear system of cubics passing through p1, . . . , pr is the complete 
anticanonical system −K on Pr (as K = −3H + E1 + + Er)· · · 

Proposition 2. Sd contains a finite number of lines, which are the images of 
the exceptional curves Ei, the strict transforms of the lines �pi, pj �, i =� j, and 
the strict transforms of the conics through 5 of the {pi}. 

Proof. Since H = −K, the lines on S are its exceptional curves (want � H = 1 = ·
−K · �, 2g − 2 = −2 = �2 + K · � = ⇒ �2 = −1). In particular, j(Ei) are lines in 
S. Let E be a divisor on S not equal to some Ei. Then E H = 1, E Ei = 0 or 1 · · 
implies that E ≡ mL− miEi with mi ∈ {0, 1} for all i, E H = 3m− mi = 1. ·
Counting all the solutions of these equations, we get all the numbers above and 
the classes of the lines in Pic S, so we can compute intersection numbers, etc. � 

Note. Classically, a del Pezzo surface is defined to be a surface X of degree d in 
Pd s.t. ωX = OX (−1) (i.e. it is embedded by its anticanonical bundle). Every ∼
del Pezzo surface is a Pr for some r = 0, . . . , 6 or is the 2-uple embedding of 
P1 × P1 ⊂ P3 which is a del Pezzo surface of degree 8 in P8 . 

If we have p1, . . . , pr a finite set of points in P2 , we can define a notion of 
general position for these (no 3 collinear, no 6 on a conic, even after a finite 
set of admissible quadratic transformations). If we blow up 7 points in general 
position, we get exactly 56 irreducible nonsingular exceptional curves of the first 
kind. For r = 8, we get 240 exceptional curves. The numbers are related to 
the root latices A1, A2, A5, D4, D5, E6, E7, E8: the automorphism groups of these 
graphs coming from exceptional curves are related to the Weyl groups of these 
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groups. If we blow up r = 9 points, the surface has infinitely many exceptional 
curves of the first kind. 

Theorem 1. Any smooth cubic surface in P3 is a del Pezzo surface of degree 3, 
i.e. it is isomorphic to P2 with 6 points blown up. 

Theorem 2. Any smooth complete intersection of 2 quadrics in P4 is a del Pezzo 
surface of degree 4. 

See Beauville for proofs. 

1.2. Rational normal scrolls. A scroll is a ruled surface embedded in PN s.t. 
the fibers of ruling are straight lines. The Veronese embedding of P1 into Pd 

is called the rational normal curve, and comes from vd : P1 → Pd , [x : y] �→
[xd : xd−1y : : yd]. Its image has degree d, which is the minimal degree for · · · 
a nondegenerate curve in Pd: if you intersect a curve of degree d with a generic 
hyperplane, you get e points which span Pd−1, so e ≥ d. A rational normal scroll 
Sa,b in Pa+b+1: take 2 complementary linear subspaces of dimensions a and b, put 
a rational normal curve in each, and take the union of all lines joining va(p) to 
vb(p) for p ∈ P1 . We can also think of Sa,b as the quotient of (A2�{0})×(A2�{0}) 
by the action of Fm × Fm (k

∗ × k∗) acting as 

(λ, 1) : (t1, t2, x1, x2) �→ (λt1, λt2, λ
−a x1, λ

−b x2)
(2) 

(1, µ) : (t1, t2, x1, x2) �→ (t1, t2, µx1, µx2) 

One can check that the fibers are P1: we get a geometrically ruled surface over 
P1, i.e. a rational surface. In fact, Sa,b is isomorphic to Fn, n = b − a, and the 
special curve G of negative self-intersection −n is the rational normal curve of 
degree a where 1 ≤ a ≤ b. The hyperplane divisor (OFn (1)) is G + bF and the 
degree of Sa,b is a + b. When a = 0, we get a cone over a rational normal curve 
of degree b, while for a = b = 1 we get a smooth quadric in P3 . 

Theorem 3. A surface of degree n − 1 in Pn is either a rational normal scroll 
Sa,b or the Veronese surface of degree 4 in P5: this is the minimal possible degree 
for a nondegenerate surface. 

Theorem 4. A surface of degree k in Pk is either a del Pezzo surface or a Steiner 
surface. 

Next, we will see where ruled and rational surfaces fit into the classifications 
of surfaces. 

Theorem 5 (Enriques). An algebraic surface with Kodaira dimension κ(S) = 
−∞ is ruled. 

Theorem 6 (Castelnuovo). An algebraic surface is rational iff q = p2 = 0. 

Theorem 7. An algebraic surface has κ = −∞ iff p4 = p6 = 0 


