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ALGEBRAIC SURFACES, LECTURE 7

LECTURES: ABHINAV KUMAR

1. RULED SURFACES (CONTD.)

As before, we have a short exact sequence 0 — L — E — M — 0 for any
vector bundle of rank 2 on a curve B. Let deg (E) = deg (A2E) = deg Ldeg M,
hi(E) = dim H*(B, E). We can twist E by some line bundle so that h°(B, E) # 0
but for any line bundle M on C' with deg (M) < 0, h%(F ® M) = 0. Such and
E is called normalized. The number e = —deg (F) is called the invariant of the
ruled surface X = P(FE). There is a section ¢ : B — X with image By s.t.
O\(By) = Ox(1).

Proof. Let s € H°(E) be a nonzero section. This gives a map 0 — Og = E —
E/sOp = L — 0. We claim that L is an invertible sheaf on B. If not, then L
must have torsion. Let F' C E be the inverse image of the torsion subsheaf of L.
F is torsion free of rank 1 on C'. By assumption, Op C F, so deg F' > 0. But
then H'(E ® F~') # 0 and deg (F~!) < 0 contradicting that E is normalized.
Thus, L must have been invertible. The universal property then gives us a section
0o : B — X with image By. Then it is easy to check that Ox(By) = Ox(1). O

Lemma 1. Let X be a ruled surface over a curve B of genus g, determined by
a normalized E of rank 2. Then
(a) if E decomposes, then E = Op @ L for some L with deg L < 0 so e =
—deg EF' = —deg L > 0, and
(b) if E is indecomposable, then —2g < e < 2g — 2.

Corollary 1. Every E of rank 2 on P' decomposes (i.e. no case (b)).

Thus, a P-bundle over P! can be written as P(Op1 & Opi(—n)) = P(Op &
Opi(n)). In fact, by a theorem of Grothendieck, every locally free sheaf on P! is
decomposable.

Proof. (a) If E decomposes, then E' = L & M, where L and M are line bundles
on B. Then we must have deg L, deg M < 0. (Otherwise, E @ L™ or E® M~!
would have global sections, contradicting the fact that E is normalized.) Also,
H°(E) = H°(M)® H°(L), so that L or M has global sections and therefore must

be Opg, since its degree is positive.
1
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(b) We have 0 — Op — F — L — 0. This is a nontrivial extension, so it
corresponds to a nontrivial element of Ext (L, Op) = H(B,L™"). So

HYB,L™") = H°B,L+ Kp)#0 = deg(L+ Kp) >0
— e¢=—degFE = —deg L =deg L' <29 —2

(1)

On the other hand, H°(F ® M) = 0 for all M with deg M < 0. Take an M with
deg M = —1. Then we get

(2) 0=H(E®M)— H(L®M)— H (M) — - -

implying that h°(L @ M) < h'(M). Now, since deg M < 0,h°(M) = 0. By
Riemann-Roch, h'(M) = gand h'°(L@ M) > degL —1+1—g=degl —g —
deg L <29 = e > —2g as desired. 0

1.1. Invariants. Let Pg(E) = X — B be a ruled surface.

Proposition 1. For h the class of Ox(1),
(1) h? = deg (E) = —e.
(2) K ~ —2h+7*(Kp + [A’E]), K = —2h + (29 — 2+ deg (E)) f.
(3) K2 =8(1-9g).
(4) ¢ = h'(X,0x) =g,p, = K*(X,0x) =0 and p, = h*(X,w5") = 0 for all
n > 0

Proof. (1) Let E’ be a vector bundle on a surface s.t. there exists line bundles
L, M satistying 0 - L — E' — M — 0. Then

L-M=L" M"=x(0x)—x(L) = x(M) +x(L® M)

= Xx(Ox) = x(E') + x(\°E')
so L - M only depends on E’, call it co(£’). This is actually the second Chern
class: the total Chern classes of L and M are (14 L) and (1 + M) respectively.
Apply this to 7*E with 0 — 7*L — 7*E — M — 0. We get co(7*E) =
7 L-m*M = 0 (multiple of the fiber). We also have 0 - N — 7*E — Ox (1) — 0

(corresponding to the section), implying that Ox(1)- N =0 = h-N = 0.
Moreover, 7 A2 E 2 N ® Ox(1). N ~ —h + 7*[A2E]. Thus,

(4) 0=hN = —h* + hr*[A’E] = deg E — h?

(3)

and h? = deg .

(2) Let Kx ~ ah + ©*b for b € Pic B. By adjunction for a fiber f, we have
—2=29-2=f-(f+K)=f-(ah+7*b) = a,sowx ~ Ox(—2By+ 7*b). Next,
using the adjunction formula for By (section corresponding to Ox(1)) gives

(5) wpB :CUX®O)((B())®OBO %OX(—BO+7T*b)®(’)BO
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Identifying By with B using 7, we get Kg = —[A’E] +b = b= Kp + [A\*E]
via

(6) 0—-0p—FE—FE/Op—0

and \2E = E/Og = m(Ox (1)) = Ox(Bo)|s,. Thus, K ~ —2h+7*(Kp+[\* E])
and K = —2h + (29 — 2 + deg F) f as desired.
(3) K* = 4h*—4(h- f)(29—2+deg E) = 8(1—g) since h-f = 1 and h* = deg F.
(4) q,py, pn are birational invariants, so we can assume X = B x P!. Then
H(X,QY) = HY(B,wp)®H (P!, wp1) and ¢ = g (since the latter term vanishes).
This shows that h!® = ¢ = h"! = g as long as we work over C, implying that
H°(X,Qx) = 1. More generally, we use Noether’s formula: x(Ox) = 55(K?+c¢3),
where co(X) = ¢o(B) - co(P?) = (2 — 29)2 = 4 — 4g, implying that x(Ox =1—g
and h!'(Ox) = g since h*(Ox) = h°(wx) = 0. Moreover,
(7) H'(X,w§") = H'(B,w§") @ H'(P',ws") = 0

]Pnl
as stated. O

Remark. For more results on vector bundles of rank 2, see Hartshorne, Beauville,
etc. Here are some results: for B an elliptic curve, vectors bundles of rank 2 are
either

e decomposable

e isomorphic to £ ® L for E a nontrivial extension of Op by Opg, ie. a
nonzero element of H'(BOpg) = k

e isomorphic to £ ® L for E a nontrivial extension of Og(p) by Op, i.e. a
nonzero element of Ext *(Op(p), Op) = H (B, Op(—p)) = k by Riemann-
Roch.

For g > 2, there are 3¢ — 3 moduli. More precisely, one looks at semi-stable
vector bundles of rank 2: &£ is semi-stable if for every quotient locally-free sheaf
deg F deg &

EHFHO,WehaveWZ s

1.2. Elementary Transformations. Let 7 : X — B be a given geometrically
ruled surface. Let p € X and let E be the fiber of 7 containing p. Let f : X — X
be the blowup of X at p. Then since F2? = 0, the proper transform F satisfies
F? = —1. So it is an exceptional curve of the first kind, so we can blow it down
to get 7’ : X’ — B another geometrically ruled surface.

Now, let X = Pg(F) for E a rank 2 vector bundle on B. The point p € X
corresponds to a surjection u, : £ — k(p) to the skyscraper sheaf at p (by the
universal property). Keru, = E’, a vector bundle of rank 2, so set X' = Pg(E").
Such an X --» X' is an elementary transformation, and corresponds to £ — FE.

Problem. Let X be a minimal ruled surface over a curve B of genus > 0. Then
X is obtained from B x P! by a finite sequence of elementary transformations.
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2. RATIONAL SURFACES

Rational surfaces are surfaces birational to P? or to P* x P!. We've already
shown that any minimal model must be geometrically ruled over P!. So let’s
check which Ppi(E) are minimal. We showed that E can be twisted so that it
becomes Opt @ Op1(n), n > 0. Its projectivization is called the n-th Hirzebruch
surface F,,. As usual, let h be the class of O, (1) in Pic IF,,, f the class of a fiber.

Proposition 2. (a) PicF, =Zh ® Zf, f> =0, fh = 1,h* = n,
(b) if n > 0, there is a unique irreducible curve B on F, with negative self
intersection, and b is its closure in Pic F,,, then b = h—nf,b*> = —n, and
(¢) F,, and IF,, are not isomorphic unless m = n, F,, is minimal except when
n =1, and Fy is isomorphic to P? blown up at a point.

Proof. (a) follows from the previous results, noting that h? = deg (Op1 & Op1(n)).
For (b), let s be the section of 7 : F,, — P! corresponding to £ = Op1 ®Op1(n) —
Opi. Let B = s(P') and bits class. Then b = ¢h+mf for {,m € Z. Since b-f = 1,
(=1,b=h+nf.

(8) S*OFn<1) = O]]:Dl — h-b= degﬂml(O]}nl) =0
Thus,
(9) 0=hh+mf)=h>+m = m=—-h>=-n = b=h—nf

and b* = (h—nf)> =h*—2n(h- f)+n’f? =n—2n+0 = —n. We need to
show it’s the only irreducible curve with negative self-intersection. Let C' be some
irreducible curve # B. Write [C] = ah+ G f. Then C- f > 0 by the useful lemma,
since f? = 0 is nonnegative, implying that « > 0 and C -6 >0 = 3 >0
since b+ f =1 and b-h = 0. Thus, [C]? = a?n + 2a3 > 0. The induced form on
1

1 —n

For (c), it follows from the existence of the special curve of self-intersection —n
on I, that F, # F,, if n # m. Note that Fy = P! x P!, and any C = ah; + Bh,
so all curves on [y have non-negative self-intersection. There are no —1 curves
on F, for n # 1, so [F,, is minimal for n # 1. For Fy, let S be the blowup of
P? at 0, E the exceptional divisor. Projection away from 0 defines a morphism

Pic F,, = Xf 4+ Zb can be written as

7 : S — P! which gives S as a geometrically ruled surface on P'. E? = —1
implies S = F;, so F; is not minimal, and is isomorphic to P? blown up at a
point. [l

Note. An elementary transformation of IF,, corresponding to a point on a special
curve gives [, 1, while one corresponding to a point not on the special curve
gives F,,_4.



