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ALGEBRAIC SURFACES, LECTURE 7 

LECTURES: ABHINAV KUMAR 

1. Ruled Surfaces (contd.) 

As before, we have a short exact sequence 0 L E M 0 for any → → → →
vector bundle of rank 2 on a curve B. Let deg (E) = deg (∧2E) = deg Ldeg M , 
hi(E) = dim H i(B, E). We can twist E by some line bundle so that h0(B, E) = 0 �
but for any line bundle M on C with deg (M) < 0, h0(E ⊗ M) = 0. Such and 
E is called normalized. The number e = −deg (E) is called the invariant of the 
ruled surface X = P(E). There is a section σ : B X with image B0 s.t.→ 
Oλ(B0) = OX (1). 

s
Proof. Let s ∈ H0(E) be a nonzero section. This gives a map 0 → OB → E →
E/sOB = L 0. We claim that L is an invertible sheaf on B. If not, then L→
must have torsion. Let F ⊂ E be the inverse image of the torsion subsheaf of L. 
F is torsion free of rank 1 on C. By assumption, OB � F , so deg F > 0. But 
then H0(E ⊗ F −1) =� 0 and deg (F −1) < 0 contradicting that E is normalized. 
Thus, L must have been invertible. The universal property then gives us a section 
σ0 : B X with image B0. = OX (1).→ Then it is easy to check that OX (B0) ∼ � 

Lemma 1. Let X be a ruled surface over a curve B of genus g, determined by 
a normalized E of rank 2. Then 

(a) if E decomposes, then E ∼= OB ⊕ L for some L with deg L ≤ 0 so e = 
−deg E = −deg L ≥ 0, and 

(b) if E is indecomposable, then −2g ≤ e ≤ 2g − 2. 

Corollary 1. Every E of rank 2 on P1 decomposes (i.e. no case (b)). 

Thus, a P1-bundle over P1 can be written as P(OP1 = P(OP1⊕ OP1 (−n)) ∼ ⊕ 
OP1 (n)). In fact, by a theorem of Grothendieck, every locally free sheaf on P1 is 
decomposable. 

Proof. (a) If E decomposes, then E = L ⊕ M , where L and M are line bundles 
on B. Then we must have deg L, deg M ≤ 0. (Otherwise, E ⊗ L−1 or E ⊗ M−1 

would have global sections, contradicting the fact that E is normalized.) Also, 
H0(E) = H0(M)⊕H0(L), so that L or M has global sections and therefore must 
be OB , since its degree is positive. 
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(b) We have 0 → OB → E → L → 0. This is a nontrivial extension, so it 
corresponds to a nontrivial element of Ext 1(L, O ) = H1 1

B (B, L− ). So 

H1(B, L−1) = H0(B, L + KB) = 0 =⇒  deg (L + KB ) ≥ 0 
(1) 

=⇒  e = −deg E = −deg L  = deg L−1 ≤ 2g − 2 

On the other hand, H0(E ⊗ M) = 0 for all M with deg M < 0. Take an M with 
deg M = −1. Then we get 

(2) 0 = H0(E ⊗ M) → H0(L ⊗ M) → H1(M) → · · · 

implying that h0(L ⊗ M) ≤ h1(M). Now, since deg M < 0, h0(M) = 0. By 
Riemann-Roch, h1(M) = g and h0(L  M)  deg L  1 + 1  g = deg L  g = 
deg L ≤  

⊗
2  

≥ − − − ⇒
g =⇒ e ≥ −2g as desired. � 

1.1. Invariants. Let PB(E) = X → B be a ruled surface. 

Proposition 1. For h the class of OX (1), 

(1) h2 = deg (E) = −e. 
(2) K ∼ −2h + π∗(K + [ 2

B E]), K 2h + (2g  2 + deg (E))f . 
(3) K2 = 8(1 −  

∧ ≡ − −
g).

(4) q = h1(X, 2
X ) = g, pg = h (X, 

  
O O ) = 0 and p = h0(X, ω⊗n

X n X ) = 0 for all 
n > 0.

�

Proof. (1) Let E � be a vector bundle on a surface s.t. there exists line bundles 
L, M satisfying 0 L E � M 0. Then → → → → 

(3) 
L · M = L−1 · M−1 = χ(OX ) − χ(L) − χ(M) + χ(L ⊗ M) 

= χ(OX ) − χ(E �) + χ(∧2E �) 

so L M only depends on E �, call it c2(E
�). This is actually the second Chern · 

class: the total Chern classes of L and M are (1 + L) and (1 + M) respectively. 
Apply this to π∗E with 0 π∗L π∗E π∗M 0. We get c2(π

∗E) = → → → →
π∗L·π∗M = 0 (multiple of the fiber). We also have 0 → N → π∗E → OX (1) → 0 
(corresponding to the section), implying that OX (1) N = 0 = h N = 0.· ⇒ · 
Moreover, π∗ ∧2 E ∼ 2E]. Thus, = N ⊗OX (1). N ∼ −h + π∗[∧

(4) 0 = hN = −h2 + hπ∗[∧2E] = deg E − h2 

and h2 = deg E. 
(2) Let KX ∼ ah + π∗b for b ∈ Pic B. By adjunction for a fiber f , we have 

−2 = 2g − 2 = f (f + K) = f (ah + π∗b) = a, so ωX ∼ OX (−2B0 + π∗b). Next, · · 
using the adjunction formula for B0 (section corresponding to OX (1)) gives 

(5) ωB = ωX ⊗OX (B0) ⊗OB0 
∼= OX (−B0 + π∗b) ⊗OB0 
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dentifying B with B using π, we get K = −[∧2
0 B E] + b =⇒  b = KB + [

 
∧2E] 

ia

6) 0 → OB → E → E/OB → 0


nd ∧2E = E/O  
B = π∗( X (1)) = X (B0) B0 . Thus, K 2h+π∗(K 2

B +[ E])

nd K ≡ −2h + (2g − 2 

O O | ∼ −
+ deg E)f as desired. 

(3) K2 = 4h2 −4(h·	f)(2g−2+deg E) = 8(1−g) since h f = 1 and h2 = 

�
· deg E.

(4) q, pg, pn are birational invariants, so we can assume X = B × P1 . Then 
0(X, Ω1 

 ) = H0(B ω 0 1
X , B) H (P , ω 1 ) and q = g (since P the latter term vanishes). 

his shows that h10  
⊕

= g =⇒ 	 h01 = g as long as we work over C, implying that 
0(X, ΩX ) = 1. More generally, we use Noether’s formula: χ(O 1

X ) =  (K
2 +c2),12

here c2(X) = c2(B) · c2(P2) = (2  2g)2 = 4  4g, implying that χ( X = 1  g
nd h1(OX ) = g since h2(OX ) = 

− − O −
h0(ωX ) = 0. Moreover, 

7)	 H0(X, ω⊗n) = H0(B, ω⊗n
X B ) ⊗ H0(P1, ω⊗n) = 0 P1 

s stated.	 � 

emark. For more results on vector bundles of rank 2, see Hartshorne, Beauville, 
tc. Here are some results: for B an elliptic curve, vectors bundles of rank 2 are 
ither 

•	 decomposable 
	 isomorphic to E  L for E a nontrivial extension of B by B, i.e. a 

I
v

(

a
a

H
T
H
w
a

(

a

R
e
e

• ⊗ O O
nonzero element of H1(BOB) ∼= k 

•	 isomorphic to E ⊗ L for E a nontrivial extension of OB(p) by OB, i.e. a 
nonzero element of Ext 1(OB(p), OB ) = H1(B, OB(−p)) ∼= k by Riemann-
Roch. 

For g ≥ 2, there are 3g − 3 moduli. More precisely, one looks at semi-stable 
vector bundles of rank 2: E is semi-stable if for every quotient locally-free sheaf 
E → F → 0, we have deg F ≥ deg E .

rk F rk E 

1.2. Elementary Transformations. Let π : X B be a given geometrically 
ruled surface. Let p ∈ X and let E be the fiber of π

→
containing p. Let f : X̃ → X 

be the blowup of X at p. Then since F 2 = 0, the proper transform F̃ satisfies 
F̃ 2 = −1. So it is an exceptional curve of the first kind, so we can blow it down 
to get π� : X � B another geometrically ruled surface. 

Now, let X
→ 
= PB(E) for E a rank 2 vector bundle on B. The point p ∈ X 

corresponds to a surjection up : E k(p) to the skyscraper sheaf at p (by the →
universal property). Ker up = E �, a vector bundle of rank 2, so set X � = PB (E

�). 
Such an X ��� X � is an elementary transformation, and corresponds to E � E.→ 

Problem. Let X be a minimal ruled surface over a curve B of genus > 0. Then 
X is obtained from B × P1 by a finite sequence of elementary transformations. 
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2. Rational Surfaces 

Rational surfaces are surfaces birational to P2 or to P1 × P1 . We’ve already 
shown that any minimal model must be geometrically ruled over P1 . So let’s 
check which PP1 (E) are minimal. We showed that E can be twisted so that it 
becomes O 1 ⊕O 1 (n),  P P n  0. Its projectivization is called the n-th Hirzebruch 
surface Fn. As usual, let 

≥
h be the class of OFn (1) in Pic Fn, f the class of a fiber. 

Proposition 2. (a) Pic Fn = Zh  Zf, f 2 = 0, fh = 1, h2 = n, 
(b)	 if n > 0, there 

⊕
is a unique irreducible curve B on Fn with negative self 

intersection, and b is its closure in Pic F 2 
n, then b = h − nf, b = −n, and 

(c)	 Fn and Fm are not isomorphic unless m = n, Fn is minimal except when 
n = 1, and F1 is isomorphic to P2 blown up at a point. 

Proof. (a) follows from the previous results, noting that h2 = deg ( P1 P1 (n)). 
For (b), let s be the section of π : Fn → P1 corresponding to E  

O ⊕O
= P1 ) P1 (n

1
1                

O ⊕O → 
OP . Let B = s(P ) and b its class. Then b = �h+mf for �, m
      

∈ Z. Since b·f = 1, 
� = 1, b = h + nf .

(8)	 s∗OFn (1) = O 1 =⇒  h  P · b = deg P1 (OP1 ) = 0 

Thus, 

(9) 0 = h(h  + mf) = 2 h + m =⇒  m = −h2 = −n =⇒  b = h − nf 

and	 b2 = (h  nf)2 = h2  2n(h  f) + n2f 2 = n  2n + 0 = n. We need to − − − −·
show it’s the only irreducible curve with negative self-intersection. Let C be some 
irreducible curve �= B. Write [C] = αh+βf . Then C ·f ≥ 0 by the useful lemma, 
since f 2 = 0 is nonnegative, implying that α ≥ 0 and C · b ≥ 0 = ⇒ β ≥ 0 
since b f = 1 and b h = 0. Thus, [C]2 = α2n + 2αβ ≥ 0. The induced form on · ·	 � � 

0	 1 
Pic	 Fn = Xf + Zb can be written as .

1 −n 
For (c), it follows from the existence of the special curve of self-intersection −n 

on Fn that Fn �= Fm if n �= m. Note that F0 = P1 × P1, and any C = αh1 + βh2 

so all curves on F0 have non-negative self-intersection. There are no −1 curves 
on Fn for n =� 1, so Fn is minimal for n =� 1. For F1, let S be the blowup of 
P2 at 0, E the exceptional divisor. Projection away from 0 defines a morphism 
π : S P1 which gives S as a geometrically ruled surface on P1 . E2 = −1 
implies

→
S ∼ F1, so F1 blown up at a = is not minimal, and is isomorphic to P2 

point. � 

Note. An elementary transformation of Fn corresponding to a point on a special 
curve gives Fn+1, while one corresponding to a point not on the special curve 
gives Fn−1. 


