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ALGEBRAIC SURFACES, LECTURE 5

LECTURES: ABHINAV KUMAR

1. EXAMPLES

If S C P*,p €S, then projection from p gives a rational map S --» P*!
defined away from p extending to BL,S = S — P!, For instance, if
@ is a smooth quadric in P?, we get a birational map @ --» P? with
|[tilde@Q — P? a morphism. It contracts the two lines passing through p,
so Q=P*2-1).

A birational map of P? to itself is called a plane Cremona transformation
e.g. quadratic transformation. One example is ¢ : P --» P? given by
(x :y:2)— (% : % : %) It is clearly birational and its own inverse.
Let p=(1:0:0),¢g=(0:1:0),r=(0:0:1). These are the
3 base points of ¢, and ¢ blows up these points and then blows down
the three lines joining them. Similarly, we could take a linear system of
3 independent conics passing through three point p, ¢, r (non-collinear).
Generally, 2 conics passing through p, ¢, would have a unique 4th point
of intersection, gives the birational map.

Linear systems of cubics: let pq,...,p, be r distinct points in the plane
(r < 6) in general position, i.e. no 3 of them are collinear and no six lie on
a conic. Let m, : B, — P? be the blowup of py,...,p,. Let d = ¢—r. The
linear system of cubics passing through pi,...,p, defines an embedding
j:P.— P! and Sq = j(P,) is a surface of degree d in P4, called a del
Pezzo surface of degree d. e.g. Sy is a

Note. Contracting other curves and singularities: let f : Y — X be a resolution
of a normal surface singularity p € X (i.e. X is normal at p). Then p C X is
called a rational singularity— if R'f,Oy = O and Y — X is an isomorphism
away from Y\ {f7!(p)} — X ~{p}, e.g. can include nonsingular p as a rational
singularity.

Example. The duVal singularities are examples of rational singularities.

Ay
D,

2?4yt 42 =0
22 +y?z 42" = 0.

Eg 2>+ + 22 =0.
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Ee 22+ y* +y2* =0.

Eg 2* + 3 +2° = 0.
If you resolve these, you get the corresponding Dynkin diagrams for the dual
graph of the exceptional curves.

Theorem 1 (Artin Contraction). A connected set of curves {C;} on a surface
Y is the exceptional locus of a rational singularity p € X iff (a) the intersection
matriz (C;, C;) is negative definite, and (b) p,(D) < 0 for every D supported on
U Ci. Note that p,(D) =1 — x(Op) by definition, 2p, —2 =D - (D + K).

2. RULED SURFACES

Definition 1. A surface X is ruled if it birational to P! x B for a singular
projective curve B.

Let X be a surface, B a nonsingular projective curve.

Definition 2. A pencil of curves with base B on X is a dominant rational map
m: X --» B s.t. k(B) is alg. closed in k(X).

Note that this map 7 is defined on the complement of a finite number of points
x1,...,%,. If mis not regular at these points, they are called base points of the
pencil, and the fibers {7~!(y)|y € B} is the family of curves of the pencil . For
n the generic point of B, 7~1(n) is called the generic curve of the pencil 7.

Definition 3. A smooth morphism X — B is called a geometrically ruled surface
over B if the fibers are all isomorphic to P*.

Theorem 2 (Noether-Tsen). Let m : X --» B be a pencil of curves s.t. the
generic curve has arithmetic genus zero. Then X is birational to P! x B (and
the generic fiber of m is = P}C(B)). In particular, X is a ruled surface.

Definition 4. Let K be a field. K has property C, (r > 0) if for every homo-
geneous polynomial of degree d > 1 in n > 2 wvariables, it has a nonzero solution
in K™ whenever d” < n.

Remark. Note that K has property Cj iff K is alg. closed, and finite fields have
property C;. Moreover, if K has property C,., then K has property Cs for s > r.

Lemma 1. If K has property Cy, so does every alg. extension of L of K.

Proof. We can assume that L/K is finite. Let F'(x) be a homogeneous polynomial
of degree d in n variables (d < n) coefficients in L. Let f(x) = Normp, xF(z).
By choosing a basis eq,...,e, (m = [L : K]) of L/K, and setting z = z1e; +
<o+ + Tpme, we see that f can be expressed as a homogeneous polynomial of
degree md in mn variables. Since d < n,md < m, we have a nontrivial solution
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Proposition 1. Let k be algebraically closed. Then k(T) (purely transcendental
extension in one variable) has property C,.

Proof. Let f(Xi,...,X,) be a homogeneous polynomial of degree d < n in
Xi,..., X, with coefficients in k(7). We may as well assume that the coeffi-
cients are in k[T]. We'll show 3 a nontrivial solution in k[T]. Let f(xy,..., X;) =
S Ciyoi, X1 Xin for ¢y, € k[T]. Let = maxdegc;,..;, over all coefficients
of f. Write

(1) f = fO(X17"'7Xn) +Yfl(X177Xn>++T”fu<X177Xn)

where f; € k[X3,...,X,]. For new variables Yjg, ..., Y, (s to be chosen later),
write

(2) Xi=Yo+Yul+ -+ Y17

and let
(3) (Vio, -+ Yao) = FO_ YT Yo, TV, V1Y)
=0

This has degree sd + p in T'. Write it as
(4) ¢ = (b()(Yim e 7Yns) + Tgbl(}/iO; e ;Yns) +-+ TSd+M¢sd+p<}/107 e 7Yns)

i.e. have ds+p+1 homogeneous polynomials ¢; of degree d in Yy, - - - , ¥,,. Since
n > d, for large enough s, n(s + 1) > ds + p + 1 and there are more variables
than equations. Because k is alg. closed, we have a solution in k. 0

Proposition 2. Let k be a field, k its alg. closure. Let X be an algebraic curve,
proper over k.

Proof. Riemann-Roch on Ky, straightforward. 0]

Lemma 2. If, in addition to the hypothesis of proposition, X also has a k-
rational point, then X is k-isomorphic to Py.

Corollary 1. Let X have property C, and let X be geometrically integral, proper
curve over k of arithmetic genus 0. Then X =, P!,

of Noether-Tsen. Let n be the generic point of B. By the above, the field k(n) =
k(B) has property C;. By assumption, X, = 7 !(n) has arithmetic genus 0.
Blowing up X enough times, we get ¢ : X’ — X and a morphism X' — B
completing mo¢. Note that this does not change the generic fiber. By assumption,
k(B) is algebraically closed in k(X). We see X, = (7o ¢)(n) is geometrically
integral, and therefore is k(n)-isomorphic to P,lc(n). So k(X,) = k(n)(t) for t an

independent variable over k(n), and X is birational to P! x B. O
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Theorem 3. Let m : X — B be a surjective morphism from a surface X to a
nonsingular, projective curve B s.t. for some closed point b € b, 7—'(b) = PL.
Then 3 a sectiono : B — X, an open subset W C B,b € W, and an isomorphism
[ Y W) — P x W s.t. the following diagram commutes

W) —L= Pt

(5) \ l

w

Proof. B is a nonsingular curve, and 7.(Ox) is a torsion-free coherent Op-
module, locally free of finite rank (7 is flat and H'(77'(b), Oz-1()) = 0). By
the base change theorem, we see that H' (7~ ('), Oz-1¢y)) = 0 for b’ in a neigh-
borhood V' of B, and m,0x @ k(b) — H°(m ' (V), Or-1(ry) is an isomorphism for
veVv.

(6) 7N 0) 2P = dim HO (7 (1), Op-1(y) = 1

so m.Ox is locally free of rank 1, i.e. is Op. Thus, k(B) is alg. closed in k(X),
and 3U C V containing b s.t. Fy = 7= (V/) is geometrically integral for &' € U.
F, = P! and the arithmetic genus of Fj, does not depend on ¥, so the generic
fiber has arithmetic genus 0 and the closed fibers are P*. Thus, F, = ]P’,lf(n).

This implies that F, has a rational point over k(1) = k(B), and 3 a morphism
Spec k(B) — F, and therefore Spec Op, — X a B-morphism, giving us a ra-
tional section o : B --+ X. B is a nonsingular curve and X is projective, so o
extends to a morphism. o : B — X is a section (7 oo = idg). Let D = o(B).
Then D - Fy =1 for ¥/ € B. Let X’ = #~'(U). Since the fibers of 7’ are P!, and
Ox/(D) ® Op, = Op, 1), we have dim 44,y H*(Ox (D) ® k(b)) = 2 for V/ € U.
Again applying the base change theorem, we have ' = 7, (Ox/(D)) alocally free
O, U-module of rank 2 and the canonical homomorphism

(7) W*Ox/(b) X k(b/) — HO(O)((D> &® OFb’)

is an isomorphism for ' € U. Thus 7*1.Ox/(D) = 7*(E) — Ox/(D) is sur-
jective. By the universal property of P(FE), we have a unique U-morphism
v X' — P(E) st. u*(Opm(D)) = Ox:/(D). It is clear that u is an iso-
morphism since it is an isomorphism fiber by fiber (u, : Fy — PY(k(V'))) and
take b € W C U small enough to trivialize P(E). O



