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ALGEBRAIC SURFACES, LECTURE 4

LECTURES: ABHINAV KUMAR

We recall the theorem we stated and lemma we proved from last time:

Theorem 1. Let f : X ——» S be a birational morphism of surfaces s.t. f=1 is
not defined at a point p € S. Then f factors as f : X 5 S 5 S where g is a
birational morphism and 7 is the blowup of S at p.

Lemma 1. Let S be an irreducible surface, possibly singular, and S’ a smooth
surface with a birational morphism f : S — S'. Suppose f~' is undefined at
p€S. Then f~1(p) is a curve on S.

Lemma 2. Let ¢ : S —-+ S’ be a birational map s.t. ¢~ is undefined at a point
p € S". Then there is a curve C on S s.t. $(C) = {p}.

Proof. ¢ corresponds to a morphism f: U — S" where U is some open set in S.
Let I' € U x S’ be the graph of f, and let S; denote its closure in S x S’. S is
irreducible but may be singular.
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The projections ¢, ¢’ are birational morphisms and the diagonal morphism com-
mutes. Since ¢~1(g) is not defined, (¢')~*(p) is not defined either, so 3C; C S an
irreducible curve s.t. ¢'(Cy) = {p}. Moreover, ¢q(C;) = C'is a curve in S: if not,
since S1 C S xS, ¢(Cy) apoint = Cy C {z} xS’ for some = € S; but such a
C can only intersect the graph of f in {(z, f(x))} so the closure of the graph of
f can’t contain the curve C. By construction, C' contracts to {p} under ¢. O

Proof of theorem. Let g = 7! o f be the rational map in question. We need to
show that ¢ is a morphism. Let s = ¢!, and suppose that ¢ is undefined at a
point q € X.
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Applying the second lemma, we obtain a curve C' C S s.t. s(C) = {q}. Then
m(C) = f(¢q) by composing s(C') = {¢q} with f. So we must have C' = E, the
exceptional divisor for 7, and f(q¢) = p. Let O,, be the local ring of X at ¢,
and let m, be its maximal ideal. We claim that there is a local coordinate y on
S at ps.t. f*y € m2. To see this, let (z,t) be a local system of coordinates at
p. If f*t € m? then we are done. If not, i.e. f*t ¢ m?, then f*¢ vanishes on
/7' (p) with multiplicity 1, so it defines a local equation for f~!(p) in Ox,. So
f*(x) =u- f*t for some u € O, ,. Let y =z — u(q)t; then

) fy=fr—ulg)ft=uf(t)—ulg)f(t) = (u—u(g)f () €m

Next, let e be any point on E where s is defined. Then we have s*f*y =
(f o s)*y = m*y € m?. This holds for all e outside a finite set. But 7*y is a local
coordinate at every point of E except one, by construction, giving the desired
contradiction. O

This proves the universal property of blowing up. Here is another:

Proposition 1. Every morphism from S to a variety X that contracts E to a
point must factor through S.

Proof. We can reduce to X affine, then to X = A", then to X = A'. Then f
defines a function on S\ E = S~ {p} which extends. O

Theorem 2. Let f : S — Sy be a birational morphism of surfaces. Then 3 a
sequence of blowups my, = Sy — Sy_1 (k=1,...,n) and an isomorphism S = S,
st. f=mo---om,ou, i.e. f factors through blowups and an isomorphism.

Proof. If f~! is a morphism, we're done. Otherwise, 3 a point p of Sy where
f~!is not defined. Then f = m; o fi, where m; is the blowup of Sy at p. If
fr' is a morphism, we are done, otherwise we keep going. We need to show
that this process terminates. Note that the rank of the Neron-Severi group
rk NS(Sk) = 141k NS(Sk—_1): since rk (.S) is finite, this sequence must terminate.
More simply, since f contracts only finitely many curves, it can only factor
through finitely many distinct blowups. 0

Corollary 1. Any birational map ¢ : S --» S is dominated by a nonsingular
surface S with birational morphisms q,q' : S — S,S" which are compositions of
blow-up maps, i.e.

S
g I
S

Proof. First resolve the indeterminacy of ¢ using S and then note that ¢ is a
birational morphism, i.e. a composition of blowups by the above. ([l
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1. MINIMAL SURFACES

We say that a surface S; dominates .S, if there is a birational morphism S; —
Sy. A surface S is minimal if it is minimal up to isomorphism in its birational
equivalence class with respect to this ordering.

Proposition 2. Every surface dominates a minimal surface.

Proof. Let S be a surface. If S is not minimal, 3 a birational morphism S — 5
that is not an isomorphism, so rk NS(S) > rk NS(S;). If S; is minimal, we are
done: if not, continue in this fashion, which must terminate because rk N.S(S) is
finite. O

Note. We say that £ C S is exceptional if it is the exceptional curve of a blowup
m:S — S Clearly an exceptional curve E is isomorphism to P! and satisfies
E?=—-1land F-Kg=—1 (since —2=2g9—-2=F - (E + K).

Theorem 3 (Castelnuovo). Let S be a projective surface and E C S a curve
~ P with B> = —1. Then 3 a morphism S — S’ s.t. it is a blowup and E is
the exceptional curve (classically called an “exceptional curve of the first kind”).

Proof. We will find S” as the image of a particular morphism from S to a pro-
jective space: informally, we need a “nearly ample” divisor which will contract
E and nothing else. Let H be very ample on S s.t. H'(S,Og(H)) = 0 (take
any hyperplane section H, then H = nH will have zero higher cohomology
by Serre’s theorem). Let k = H - E > 0, and let M = H + kE. Note that
M-E = (H+kFE)-FE =k+kE? = 0. This M will define the morphism
S — P(H°(S,05(M))) (i.e. some P"). Now, Os(H)|g = Og(k) since E = P!
and deg O5(H)|g = H - E = k and on P!, line bundles are determined by degree.
ThU.S, OS(M)|E = OE

Now, consider the exact sequence
(5)

O — Os(H + (2 - 1)E) — Os(H+iE) — OE<I€ — Z) = Os<H—|—ZE)|E —0

for 1 <i<k+1. We know that H'(E, Op(k — 1)) = 0, so we get
(6)

0 —H°(S,0s(H + (i —1)E)) — H°(S,Os(H +iE)) — H*(E,Op(k — 1)) —

HY(S,05(H + (i — 1)E)) — HY(S,05(H +iE)) — 0

Thus, the latter map is surjective fori = 1,..., k+1: fori = 0, H(S,O05(H)) =0
so all those H'(S,Og(H +iE)) are zero.

Next, we claim that M is generated by global sections. Since M is locally
free of rank 1: this just means that at any given point of S, not all elements

of HY(S,Og(M)) vanish, i.e. this linear system has no base point. Since H
is very ample, M = H + kE certainly is generated by global sections away
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from E. On the other hand, H°(S,M) — H°(S, M|g) is surjective because
HY(S,H + (k—1)E) = 0. So it is enough to show that M|z is generated by
global sections on E. Now, M|g = Og(k — k) = Op is generated by the global
section 1. Therefore, lifting it to a section of H°(S, M) and using Nakayama’s
lemma, we see that M is generated by global sections at every point of E as well.

So M defines a morphism S L, P for some N. Let S’ be the image. Since
(f)*O(1) = M and deg M|g is 0, we see that f" maps E to a point p’. On the
other hand, since H is very ample, H + kE separates points and tangent vectors
away from F as well as separates points of E from points outside E. So f’ is an
isomorphism from S — E — S~ {p'}.

Let Sy be the normalization of S’. Since S is nonsingular, hence normal, the
map f’ factors through Sy to give a map f: S — Sy. E irreducible — f(FE)
is a point p (the preimage of p’ is a finite number of points). We still have
[ SN E =85~ {p}. We are left to show that Sy is nonsingular. We show
this using Grothendieck’s theorem on formal functions: if f : X — Y is a proper
map, F a coherent sheaf on X, then

(7) RL(F)) S lim (X, F)

where X,, = X X, Spec Oy /mZ is the thickened scheme-theoretic preimage of
y. We'll apply it with ¢ = 0,F = Og,f : S — Sp. fiOg = Og, since Sy is
normal. Moreover, O, = lim H %(E,,Og,). Now, it is enough to show that O, is
2-dimensional = k[[x,y]]. Let’s show for every n,

8) H"(Ey, O,) = kllz,y]]/(z,y)" = k[, y]]/(z.y)"
Forn=1,H(E,Og) = k. For n > 1, we have
(9) 0— Ip/Igt — Og,,, — Op, — 0

where E & P! = TIp/I2 = Opi(1),I3/Ip" = Opi(n). Using the LES, we
obtain

(10) 0 — H%(Opi(n)) — H'(Op,,,) = H*(Op,) — 0

When n = 1, H°(Opi(1)) is a 2-dimensional vector space. Taking a basis
z,y, H°(Og,) (which contains k) is seen to be klz,y]/(x,y)* = k ® kx & ky.
Now inducting, we find that H°(Opg,) is isomorphic to k[z,y]/(z,y)". Lift
elements z,y to H°(Og,,,), we find that H°(Op(n) is a vector space with
basis ™, 2" 'y,...,y" (contained in the symmetric power of (z,y)). So we
get HY(Op, ) = k[z,y]/(x,y)""". The truncations are compatible, so O, =
k[[z,y]] = p is nonsingular. O



