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ALGEBRAIC SURFACES, LECTURE 4 

LECTURES: ABHINAV KUMAR 

We recall the theorem we stated and lemma we proved from last time: 

Theorem 1. Let f : X ��� S be a birational morphism of surfaces s.t. f−1 is 
not defined at a point p ∈ S. Then f factors as f : X 

g 
S̃

π 
S where g is a→ →

birational morphism and π is the blowup of S at p. 

Lemma 1. Let S be an irreducible surface, possibly singular, and S � a smooth 
surface with a birational morphism f : S S�. Suppose f−1 is undefined at 
p ∈ S. Then f−1(p) is a curve on S. 

→ 

Lemma 2. Let φ : S ��� S � be a birational map s.t. φ−1 is undefined at a point 
p ∈ S �. Then there is a curve C on S s.t. φ(C) = {p}. 

Proof. φ corresponds to a morphism f : U S� where U is some open set in S.→
Let Γ ⊂ U × S � be the graph of f , and let S1 denote its closure in S × S �. S1 is 
irreducible but may be singular. 

S1 
q� 

S �� S �
φ 

The projections q, q� are birational morphisms and the diagonal morphism com­
mutes. Since φ−1(q) is not defined, (q�)−1(p) is not defined either, so ∃C1 ⊂ S an 
irreducible curve s.t. q�(C1) = {p}. Moreover, q(C1) = C is a curve in S: if not, 
since S1 ⊂ S × S �, q(C1) a point = C1 ⊂ {x}× S � for some x ∈ S; but such a⇒
C1 can only intersect the graph of f in {(x, f(x))} so the closure of the graph of 
f can’t contain the curve C1. By construction, C contracts to {p} under φ. � 

Proof of theorem. Let g = π−1 f be the rational map in question. We need to 
show that g is a morphism. Let

◦ 
s = g−1, and suppose that g is undefined at a 

point q ∈ X. 

(1) q 

X 

s(2) q 
f 

S̃ π 
�� S 

1 
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Applying the second lemma, we obtain a curve C ⊂ S̃ s.t. s(C) = {q}. Then 
π(C) = f(q) by composing s(C) = {q} with f . So we must have C = E, the 
exceptional divisor for π, and f(q) = p. Let Ox,q be the local ring of X at q, 
and let mq be its maximal ideal. We claim that there is a local coordinate y on 
S at p s.t. f ∗y ∈ m2 

q . To see this, let (x, t) be a local system of coordinates at 
p. If f ∗t ∈ m2 

q then we are done. If not, i.e. f ∗t ∈/ m2 
q , then f ∗t vanishes on 

f−1(p) with multiplicity 1, so it defines a local equation for f−1(p) in OX,q. So 
f ∗(x) = u f ∗t for some u ∈ Ox,q. Let y = x − u(q)t; then· 

(3) f ∗y = f ∗x − u(q)f ∗t = uf ∗(t) − u(q)f ∗(t) = (u − u(q))f ∗(t) ∈ m 2 
q 

Next, let e be any point on E where s is defined. Then we have s∗f ∗y = 
(f ◦ s)∗y = π∗y ∈ m2 . This holds for all e outside a finite set. But π∗y is a locale

coordinate at every point of E except one, by construction, giving the desired 
contradiction. � 

This proves the universal property of blowing up. Here is another: 

Proposition 1. Every morphism from S̃ to a variety X that contracts E to a 
point must factor through S. 

Proof. We can reduce to X affine, then to X = An, then to X = A1 . Then f 
defines a function on ˜ = S � {p} which extends. �S � E ∼

Theorem 2. Let f : S S0 be a birational morphism of surfaces. Then ∃ a→ 
sequence of blowups πk : Sk → (k = 1, . . . , n) and an isomorphism S 

∼ 
SnSk−1 →

s.t. f = π1 ◦ · · · ◦ πn ◦ u, i.e. f factors through blowups and an isomorphism. 

Proof. If f−1 is a morphism, we’re done. Otherwise, ∃ a point p of S0 where 
f−1 is not defined. Then f = π1 ◦ f1, where π1 is the blowup of S0 at p. If 
f1
−1 is a morphism, we are done, otherwise we keep going. We need to show 

that this process terminates. Note that the rank of the Neron-Severi group 
rk NS(Sk) = 1+rk NS(Sk−1): since rk (S) is finite, this sequence must terminate. 
More simply, since f contracts only finitely many curves, it can only factor 
through finitely many distinct blowups. � 

Corollary 1. Any birational map φ : S ��� S � is dominated by a nonsingular 
surface S with birational morphisms q, q� : S S, S � which are compositions of→
blow-up maps, i.e. 

S

q� 

(4) q 

S �� S �
φ 

Proof. First resolve the indeterminacy of φ using S and then note that q� is a 
birational morphism, i.e. a composition of blowups by the above. � 
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1. Minimal Surfaces 

We say that a surface S1 dominates S2 if there is a birational morphism S1 →
S2. A surface S is minimal if it is minimal up to isomorphism in its birational 
equivalence class with respect to this ordering. 

Proposition 2. Every surface dominates a minimal surface. 

Proof. Let S be a surface. If S is not minimal, ∃ a birational morphism S S1→
that is not an isomorphism, so rk NS(S) > rk NS(S1). If S1 is minimal, we are 
done: if not, continue in this fashion, which must terminate because rk NS(S) is 
finite. � 

Note. We say that E ⊂ S is exceptional if it is the exceptional curve of a blowup 
π : S S �. Clearly an exceptional curve E is isomorphism to P1 and satisfies 
E2 = −

→
1 and E KS = −1 (since −2 = 2g − 2 = E (E + K).· · 

Theorem 3 (Castelnuovo). Let S be a projective surface and E ⊂ S a curve

∼ P1 with E2 = Then ∃ a morphism S → s.t. it is a blowup and E is
= −1. S �


the exceptional curve (classically called an “exceptional curve of the first kind”).


Proof. We will find S� as the image of a particular morphism from S to a pro­
jective space: informally, we need a “nearly ample” divisor which will contract 
E and nothing else. Let H be very ample on S s.t. H1(S, OS (H)) = 0 (take 
any hyperplane section H̃, then H = nH̃ will have zero higher cohomology 
by Serre’s theorem). Let k = H E > 0, and let M = H + kE. Note that · 
M E = (H + kE) E = k + kE2 = 0. This M will define the morphism · · 
S → P(H0(S, OS (M))) (i.e. some Pn). Now, OS(H)|E 

∼ OE (k) since E ∼ P1 = = 
and deg OS (H)|E = H · E = k and on P1, line bundles are determined by degree. 
Thus, OS (M)|E 

∼= OE .

Now, consider the exact sequence


(5) 
= OS (H + iE) 0O → OS (H + (i − 1)E) → OS (H + iE) → OE (k − i) ∼ |E → 

for 1 ≤ i ≤ k + 1. We know that H1(E, OE (k − i)) = 0, so we get 

(6) 
0 →H0(S, OS (H + (i − 1)E)) → H0(S, OS (H + iE)) → H0(E, OE (k − i)) → 

H1(S, OS (H + (i − 1)E)) → H1(S, OS (H + iE)) → 0 

Thus, the latter map is surjective for i = 1, . . . , k+1: for i = 0, H1(S, OS (H)) = 0 
so all those H1(S, OS (H + iE)) are zero. 

Next, we claim that M is generated by global sections. Since M is locally 
free of rank 1: this just means that at any given point of S, not all elements 
of H0(S, OS(M)) vanish, i.e. this linear system has no base point. Since H 
is very ample, M = H + kE certainly is generated by global sections away 
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from E. On the other hand, H0(S,M) → H0(S,M |E ) is surjective because 
H1(S,H + (k − 1)E) = 0. So it is enough to show that M |E is generated by 
global sections on E. Now, M E = OE (k − k) = OE is generated by the global | ∼
section 1. Therefore, lifting it to a section of H0(S,M) and using Nakayama’s 
lemma, we see that M is generated by global sections at every point of E as well. 

So M defines a morphism S 
f � Pn for some N . Let S � be the image. Since→

(f �)∗O(1) = M and deg M |E is 0, we see that f � maps E to a point p�. On the 
other hand, since H is very ample, H + kE separates points and tangent vectors 
away from E as well as separates points of E from points outside E. So f � is an 
isomorphism from S − E S � � {p�}.→

Let S0 be the normalization of S �. Since S is nonsingular, hence normal, the 
map f � factors through S0 to give a map f : S S0. E irreducible = f(E)→	 ⇒
is a point p (the preimage of	 p� is a finite number of points). We still have 
f : S � E ∼ S0 � {p}.	 is nonsingular. We show = We are left to show that S0 

this using Grothendieck’s theorem on formal functions: if f : X Y is a proper → 
map, F a coherent sheaf on X, then 

(7)	 Rif∗(F)∧y 
∼ 

lim H i(Xn, Fn) 
n 

→ ←−
where Xn = X ×y Spec OY /my is the thickened scheme-theoretic preimage of 
y. We’ll apply it with i = 0, F = OS, f : S S0. f∗OS = OS0 since S0 is 

ˆ	
→ 

ˆnormal. Moreover, = lim H0(En, OEn ). Now, it is enough to show that is 
2-dimensional ∼

Op ←− Op 

= k[[x, y]]. Let’s show for every n, 

(8) H0(En, OEn = k[[x, y]]/(x, y)n = k[[x, y]]/(x, y)n) ∼ ∼

For n = 1, H0(E, OE ) = k. For n > 1, we have 

(9) 0 → IE
n /IE

n+1 → OEn+1 → OEn → 0 

where E ∼ P1 = ⇒ IE /I2 n+1 ∼ OP1 (n). Using the LES, we =	 E ≡ OP1 (1), IE
n /IE = 

obtain 

(10) 0 → H0(OP1 (n)) → H0(OEn+1 ) → H0(OEn ) → 0 

When n = 1, H0(OP1 (1)) is a 2-dimensional vector space. Taking a basis 
x, y, H0(OE2 ) (which contains k) is seen to be k[x, y]/(x, y)2 = k ⊕ kx ⊕ ky. 
Now inducting, we find that H0(OEn ) is isomorphic to k[x, y]/(x, y)n . Lift 
elements x, y to H0(OEn+1 ), we find that H0(OP1 (n) is a vector space with 
basis xn, xn−1y, . . . , yn (contained in the symmetric power of (x, y)). So we 
get H0(OEn+1 ) ∼ k[x, y]/(x, y)n+1 . The truncations are compatible, so ˆ == Op 

∼
k[[x, y]] = p is nonsingular. �⇒ 


