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ALGEBRAIC SURFACES, LECTURE 3 

LECTURES: ABHINAV KUMAR 

1. Birational maps continued 

Recall that the blowup of X at p is locally given by choosing x, y ∈ mp, letting 
U be a sufficiently small Zariski neighborhood of p (on which x and y are regular 
functions that vanish simultaneously only at the point p), and defining Ũ by 
xY − yX = 0 in U × P1 . If, for some q ∈ U, q = p, x(q) = 0, then Y = y X and 

x 

similarly if y ∈/ mq. So we obtain an isomorphism Ũ U at q, and Ũ π 
U fails→	 →

to be an isomorphism only at p, where π−1(p) = P1 is the exceptional divisor E. 
Note that the blowup X̃ does not depend on the choice of x, y. 

Proposition 1. If C is a curve passing through p ∈ X with multiplicity m, 

(1)	 π∗C = C̃ + mE 

Proof. Choose local coordinates x, y in a neighborhood of p s.t. y = 0 is not 
tangent to any branch of C at p. Then in Ô 

x,p we can expand the equation of C 
in a power series 

(2)	 f = fm(x, y) + fm+1(x, y) + · · · 

with fm(1, 0)	 = 0 and each fk a homogeneous polynomial of degree k. In a� 
˜neighborhood of (p, = [1 : 0]) U U P1, we have local coordinates x 

y 
∞ ∈ ⊂ ×

and t = 
x and π∗f = f(x, tx) = xmfm(1, t) + xm+1fm+1(1, t) + ), giving the · · · 

desired formula.	 � 

Theorem 1.	 We have maps 
˜ 

π∗ : Pic X → ˜ → Pic X, 1 � E givingPic X and Z ˜ 

= Pic X⊕Z. 
→ 

rise to an isomorphism Pic X ∼ If C, D ∈ Pic X, (π∗C) (π∗D) = C D,· ·
while (π∗C) E = 0 and E E = −1. We further have that K ̃ = π∗KX + E, so ·	 · X 

2K 
X̃ = (π∗KX )

2 − 1. 

Proof. Note that Pic X ∼ ) ∼ ˜	 Pic X̃= Pic (X�{p} = Pic (X�E) and we have Z → →
Pic (X̃ � E) → 0. The first map is injective because E2 = −1, and π∗ splits the 
sequence to give the desired isomorphism. For the intersection formulae, move 
C, D so that they meet transversely and do not pass through p. Because π∗ is 
an isomorphism X̃ � E X � {p}, we get an equality of intersection numbers → 

1 
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as desired. Moreover, since C (possibly after moving) does not pass through 
p, (π∗C) E = 0. Next, taking a curve passing through p with multiplicity · 
1, its strict transform meets E transversely at one point which corresponds to 
the tangent direction of p ∈ C, i.e. C̃ E = 1 and C̃ = π∗C − E. Since · 
(π∗C) E) = 0, we get 1 = C̃ E = (π∗C − E) E = −E2 as desired. Finally, to · · · 
show the desired result about canonical divisors, we use the adjunction formula 
−2 = 2(0) − 2 = E(E + K ̃ ) = −1+ E K ̃ = E KX̃ = −1. By the previous X X· ⇒ · 
proposition, KX̃ = π∗KX + nE = n = 1 (by taking intersection with E).⇒

Note that we can see this latter fact more directly. Letting ω = dx ∧ dy be the 
top differential in local coordinates at p, then π∗ω = dx ∧ d(xt) = xdx ∧ dt = ⇒
π∗KX + E = KX̃ . � 

1.1. Invariants of Blowing Up. 

iTheorem 2. π X = X and R π X = 0 for i > 0, so the two structure ∗O ̃ O ∗O ̃
sheaves have the same cohomology. 

Proof. π is an isomorphism away from E, π : X̃ � E → X � {p
i
}, so it is clear 

that OX → π∗O ̃  is an isomorphism except possibly at p, and R π∗OX̃ can only X 
be supported at p. By the theorem on formal functions, the completion at p 
of this sheaf is R� = lim H i(E , ), where E is the closed subscheme iπ∗OX̃ n OEn n 

defined on X by , ideal sheaf of E. We obtain an exact sequence 0 
In/In+1 

˜ In I the 
←− 

2 In/In+1 
→ 

→ OEn+1 → OEn → 0 with I/I = OE (1) = ⇒ = OE (n).∼ ∼
Since E ∼= P1, we have H i(E, OE(n)) = 0 for n, i > 0. Using the long exact 
sequence in cohomology, we find that H i(En, OEn ) = 0 for all i > 0, n ≥ 1, so 
the above inverse limit vanishes. Riπ O ̃ is concentrated at p and thus equals ∗ X 
its own completion, giving the desired vanishing of higher direct image sheaves. 
Also, π∗OX̃ = π∗OX follows from the fact that X is normal and π is birational 
(trivial case of Zariski’s main theorem). The final statement follows from the 
spectral sequence associated to H i and Riπ . �∗ 

This implies that the irregularity qX = h1(X, OX ) = q ̃ and geometric genus X 

pg(X) = h2(X, OX ) = pg(X̃) are invariant under blowup. 

2. Rational maps 

Let X, Y be varieties, X irreducible. 

Definition 1. A rational map X ��� Y is a morphism φ from an open subset U 
of X to Y . Note that if two morphisms U1, U2 → Y agree on some V ⊂ U ∩ U2, 
they agree on U1 ∩ U2, and thus each rational map has a unique maximal domain 
U . We say that φ is defined at x ∈ X if x ∈ U . 

Proposition 2. If X is nonsingular, Y projective, then X � U has codimension 
2 or larger. 
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Proof. If φ is not defined on some irreducible curve C, then OC,X gives us a 
valuation vC : k(X) → Z. Let φ be given by (f0 : · · · : fn) with fi ∈ K(X) s.t. 
at least one fj has a pole along C. Take the fi s.t. v(fi) is the smallest, and 
divide by it. Then φ is defined on the generic point of C, a contradiction. � 

In particular, if X is a smooth surface and Y is projective, a rational map is 
defined on all but finitely many points F (those lying on the set of zeroes and 
poles of φ). If C is an irreducible curve on X, φ is defined on C �(C ∩F ), and we 
can set φ(C) = φ(C � (C ∩ F )) (and similarly φ(X) = φ(X � F )). Restriction 
gives us an isomorphism between Pic (X) and Pic (X � F ), so we can talk about 
the inverse image of a divisor D (or line bundle, or linear system) under φ. 

3. Linear Systems 

For a divisor D, D is the set of effective divisors linearly equivalent to D, 
i.e. P(H0(X, OX (D

|
))∨
|
). A hyperplane in this projective space pulls back to 

give a divisor equivalent to D. For f ∈ H0(OX (D)), let D� be the divisor of 
zeroes of f . A complete linear system is such a space P(H0(X, OX (D))∨), while 
a linear system P is simply a linear subspace of such a system. One dimensional 
linear systems are called pencils. A component C of P is called fixed if every 
divisor of P contains C, i.e. all the elements of the corresponding subspace of 
H0(X, OX (D))∨ vanish along C. The fixed part of P is the biggest divisor F 
which is contained in every element of P , so that |D − F | for D ∈ P has no fixed 
part. A point p of X is a base point of P if every divisor of P contains p. If p 
has no fixed part, then it has finitely many base points (at most (D2)). 

4. Properties of Birational Maps between Surfaces 

(1) Elimination of indeterminacy 
(2) Universal property of blowing up 
(3) Factoring birational morphisms 
(4) Minimal surfaces 
(5) Castelnuovo’s contraction theorem 

Theorem 3. Let φ : S ��� X be a rational map from a surface to a projective 
variety. Then ∃ a surface S �, a morphism η : S � → S which is the composition 
of a finite number of blowups, and a morphism f : S � X s.t. f and φ η→ ◦
coincide. 

Proof. We may as well assume that X = Pn and φ(S) is not contained in any 
hyperplane of Pn . So φ corresponds to a linear system P ⊂ |D| of dimension m 
with no fixed component. If P has no base points, φ is an isomorphism and we 
are done. Otherwise, let p be such a base point, and consider the corresponding 
blowup π : X1 S. The exceptional curve E occurs in the fixed part of →
π∗P ⊂ |π∗D| with some multiplicity k ≥ 1 (i.e. the smallest multiplicity of 
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curves in P passing through p). Then P1 ⊂ |π∗D − kE| obtained by subtracting 
kE from elements of π∗P has no fixed component, and defines a rational map 
φ1 : X1 ��� Pm which coincides with φ π. If φ1 is a morphism, we are done; ◦
otherwise, repeat the process. We obtain a sequence of divisors Dn = πn 

∗ Dn−1 −
k E n n = ⇒ 0 ≤ Dn 

2 = Dn
2 
−1 − k2 < Dn

2 
−1, which must terminate. � 

Theorem 4. Let f : X ��� S be a birational morphism of surfaces s.t. f−1 is 
not defined at a point p S. Then f factors as f : X 

g 
S̃ π 

S where g is a ∈ → →
birational morphism and π is the blowup of S at p. 

Lemma 1. Let S be an irreducible surface, possibly singular, and S � a smooth 
surface with a birational morphism f : S S�. Suppose f−1 is undefined at 
p ∈ S. Then f−1(p) is a curve on S. 

→ 

Proof. We may assume that S is affine, with f−1(p) nonempty, so there is an 
embedding j : S An . Now, j f−1 : S ��� An is given by rational functions → ◦ 
g1, g2, . . . , gn and at least one of them is undefined at p, say g1 ∈/ OS�,p. Let 
g1 = u

v , where u, v S ,p are coprime and v(p) = 0. Let D be defined on S by ∈ O � 

f ∗v = 0. On S we have f∗u = (f ∗v)x1 (where x1 is the first coordinate function 
on S ⊂ An) (because it is true under (f−1)∗): (f−1)∗f ∗u = (f−1)∗f ∗v (f−1)∗x1,· 
k(S) = k(S �). So f ∗u = f ∗v = 0 on D, and D = f−1(Z) where Z is the subset 
of S � defined by u = v = 0. This is a finite set since u, v are coprime. Shrinking 
S � if necessary, we can assume Z = {p}, and D = f−1(p) as desired. � 


