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ALGEBRAIC SURFACES, LECTURE 22-23 

LECTURES: ABHINAV KUMAR 

1. Classification (contd.) 

Recall the classification from before: 

(a) ∃ an integral curve C on X s.t. K C < 0.· 
(b) K ≡ 0. 
(c) K2 = 0, K C ≥ 0 for all integral curves C, and ∃C � s.t. K C � > 0.· · 
(d) K2 > 0, and K C ≥ 0 for all integral curves C.· 

Theorem 1. Let X be a minimal surface in class (b) or (c). Then p4 > 0 or 
p6 > 0. So, if X belongs to class (b), then 4K ∼ 0 or 6K ∼ 0, and if X belongs 
to class (c), then |4K| or |6K| contains a strictly positive divisor. 

Proof. If X is in class (b) or (c), then K2 = 0, K C ≥ 0 for any integral curve · 
C. Thus, either 2K ∼ 0 or X has an elliptic/quasielliptic fibration. If 2K ∼ 0, 
then of course K ≡ 0, implying that X is in class (b) and p2 = 0 � = ⇒ p4, p6 = 0 �
as well. Otherwise, let f : X B be the stated fibration, and assume that → 
pg = 0 (if pg = p1 > 0, then pn > 0 for all n ≥ 2 and the theorem holds). Now, 
for X minimal with K2 = 0, pg = 0, we have that pg = h0(B, L−1 ⊗ ωB ) = 0 
and deg (L−1 ⊗ ωB) = 2pa(B) − 2 + χ(OX ) + �(T ). But χ(OX ) ≥ 0 from the 
list of last time, so by Riemann-Roch, pa(B) = 1, χ(OX ) = 0, �(T ) = 0 or 
pa(B) = 0, χ(OX ) + �(T ) < 2. We analyze these two cases separately. 

Case 1: having no exceptional fibers implies that ai = mi − 1 for all i. If ∃ a 
multiple fiber miPi with mi ≥ 2, then (say m1 ≥ 2) 

ωX = f ∗(L−1 ⊗ ωB ) ⊗OX ( (mi − 1)Pi) 
(1) � 

X Bω2 = f ∗(L−2 ⊗ ω2 ) ⊗OX ( (2mi − 2)Pi) ⊗ f ∗OB (b1) ⊗OX ((m1 − 2)P1) 
i>1 

Since deg (L−2 ⊗ω2 
B ⊗OB (b1) ≥ 1 and B is an elliptic curve, p2 ≥ 1 and so p4, p6 > 

0, proving the theorem. If f has no multiple fibers, then ωX = f ∗(L−1 ⊗ ωB ), 
and deg (L−1 ⊗ωB) = 2pa(B)−2+χ(OX )+�(T ) = 0 = ⇒ ωX ≡ 0 and thus X is 
in class (b). It also must be case 5 from last time, thus giving a bielliptic surface 
and another elliptic fibration g : X → P

1 

1, placing it in case 2 of our analysis. 
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Case 2: pa(B) = 0, i.e. B = P1, pg = 0, i.e. deg (L−1 ⊗ ωB) = −2 + χ(OX ) + 
�(T ) < 0. Now,


 a
(2)	 λ(f) = −2 + χ(OX ) +  i


�(T ) + ≥ 0

mi


and an easy check gives 

�
   na

	 h0 i

(3) (nK) = 1 + n (−2 + χ(OX ) + �(T )) + 

mi


Case 2A:	 �(T ) = 0, so ai = mi − 1 for all i. Also, −2 + 

�
χ(

� �
OX ) + �(T ) < 0 gives 

χ(OX ) = 0, 1. If χ(OX ) �= 0, then we must have m ers  at least 3 ultiple fib
(because we need −2 + mi−1  

i 
≥ 0. 

m

–	≥ 4 multiple fibers, mi ≥ 2. Then check |2K| = ∅, i.e. p2 > 0. 
–	 3 multiple fibers, all mi ≥ 3. Then |3K| = ∅, so p3, p6 > 0. 
– 3 multiple fibers, m1 = 2, m2, m3 

 
≥ 4 =

	    
⇒ |4K| =	 ∅. 

– 3 multiple fibers, m1 = 2, m2 = 3, m3 ≥ 6 =⇒ |6K| = ∅. 
Case 2B:	 �(T ) = 1, i.e. there is exactly one wild/exceptional fiber F . Now −2 + 

χ(OX ) + �(T ) < 0 =⇒ 	 χ(OX ) = 0. Also, pg = 0 =⇒ q = 1. Applying 
the corollary from the previous lecture, we get a1 = m1 −1 or m1  1 α1, 
where α1 is a common divisor of m1 and 

−
a
−

a1 + 1. Since −1 + i ≥ 0,
m  

there 
i

are at least 2 multiple fibers, so either 
–	 There exist at least 2 multiple curves with ai = mi − 1, so |2K| = ∅. 
–	 F has m1 = 3, a1 = 1, α1 = 1, m2  3 = 3K = ∅. 

 
≥

–	  
⇒ | |

F has m1 = 4, a1 = 1, α1 = 2, m2 ≥ 4 =⇒ |4K| = ∅. 
–	 F has m a1 1 

1 = β1α1, β1 ≥ 4 =⇒  ≥ =⇒ 2
2

| K| = ∅. 
m1 

–	 F has m1 = 2α1, a1 = α1  1, α1  3, m2  3 = 	 3K = ∅. 
– F  

− ≥ ≥ ⇒ | |
has m1 = 3α1, a1 = 2α1 − 1, α1 ≥ 2, m2 ≥ 2 =⇒ |2K| = ∅.

This concludes the proof.	 � 

So for X a minimal surface with elliptic/quasielliptic fibration f : X → B,

�

�
�

�
�

�
�
�
�

�
�

•	 X is in (a) ⇔ λ(f) < 0 ⇔ κ(X) = −∞ ⇔ pn = 1∀n ≥ 1 ⇔ p4 = p6 = 
0 p12 = 0, ⇔ 

•	 X is in (b) ⇔ λ(f) = 0 ⇔ κ(X) = 0 ⇔ nK ∼ 0 for some n ≥ 1 ⇔ 4K ∼
0 or 6K ∼ 0 12K ∼ 0,⇔ 

•	 X is in (c) ⇔ λ(f) > 0 ⇔ κ(X) = 1 ⇔ nK has a strictly positive divisor 
for some n ≥ 1 ⇔ |12K| has a strictly positive divisor. 

Theorem 2. Let X be a minimal surface in class (d), i.e.	 K2 > 0, K C ≥ 0· 
for all curves C on X. Then |2K| =� ∅, and for sufficiently large n, the linear 
system |nK| is free of base points and defines a morphism φn = φ|nK| : X →
P(H0(OX (nK))∨) s.t. 

•	 Xn = φn(X) is normal, with at most rational double points as singu­
larities, i.e. desingularizing gives a fixed cycle Z (the smallest divisor 
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with support in the exceptional locus with Z Ei ≤ 0 ∀ i) which satisfies · 
pa(Z) = 0, Z2 = −2. 

•	 φn is an isomorphism away from the singular locus, i.e. 

(4)	 X � φn
−1(Sing(Xn)) 

∼ 
Xn � Sing(Xn)→ 

In this case, κ(X) = 2. 

Proof. Exercise. Use Riemann-Roch, the Hodge index theorem, and Nakai-
Moishezon. The point is that if K C > 0 for all integral curves C on X,· 
then K is ample and we’re through. So the problem comes from curves Ei s.t. 
K Ei = 0. But K2 > 0 and on the orthogonal complement of K, the form ( )·	 ·
is negative definite, so there at most finitely such curves Ei. Show that they are 
rational (pa(Ei) = 0), and satisfy the criteria of rational double points. � 

There are some things left to prove in classification: one is that every minimal 
surface with κ(X) = 0, b2 = 6 is Abelian (see Bombieri-Mumford). 

Remark. For a surface of general type, |nK| is base point free for n ≥ 4, and for 
n ≥ 5, φ|nK| is an isomorphism away from the union of finitely many rational 
curves. 

To review, we have shown that, if X is a minimal surface and f : X B is→
an elliptic/quasi-elliptic fibration, then 

•	 X is in (a) iff λ(f) < 0  κ(X) =   4K  = 6K  = ∅, 
•	 X is in (b) iff λ(f) = 0 

⇔
 

−∞
 
⇔ | | | |

κ(X) = 0 4K  0 or 6K  0, 
•	 X is in  

⇔
(c) 

⇔ ∼ ∼
iff λ(f) > 0 ⇔ κ(X) = 1 ⇔ |4K| or |6K| contain strictly 

positive divisors, and K2 = 0. 
•	 X is in class (d) ⇔ κ(X) = 2, and in this case |2K| = ∅. 

Since (a),. . .,(d) are mutually disjoint and exhaustive, we get the following the­
orem: 

Theorem 3. Let X be a minimal surface. Then: 

•	 ∃C > 0 on X s.t. K · C < 0 ⇔ κ(X) = −∞ ⇔ p4 = p6 = 0 ⇔ p12 = 
0 

	
⇔ X is ruled. 

• K ≡ 0 ⇔ κ(X) = 0  4K  0 or 6K  0  12K  0  X is abelian, 
K3, Enriques, or 

⇔ ∼ ∼ ⇔ ∼ ⇔
bielliptic, 

• K2 = 0, K · C ≥ 0 ∀ C integral, and K · C � > 0 for some C ⇔ κ(X) = 
1 ⇔ K2 = 0 and |4K| or 

  
|6K| contain strictly positive divisors ⇔ X is 

honestly elliptic.
• K2 > 0, K · C ≥ 0 ∀ C > 0 ⇔ κ(X) = 2, and in this case |2K| = ∅. Such 

a surface is one of general type. 

Example. Examples of general type surfaces: 

(1) C1 × C2 where C1, C2 are smooth projective curves of genus ≥ 2. 
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(2) Smooth, complete� intersections cut out by f � n 
1, . . . , fn 2 in P of  	  degree−

d1, . . . , dn 2 s.t. di > n + 1 (then ωX = OX ( di − n − 1) is ample). −
Such a surface also has q = 0. 

(3) Godeaux surface, i.e.	 a quotient of a Fermat surface. For instance, x5 + 
y5 + z5 + t5 = 0 in P3 quotiented by Z/5Z acting as 

(5)	 σ(z, y, z, t) = (x, ζy, ζ2z, ζ3t) 

for a generator ζ of Z/5Z. There are no fixed point, and the quotient as 
q = pg = 0 but not p2 = 0, and it is of general type (K2 = 1 5 = 1). 

5

Remark. Here are various results for surfaces we did not cover here: 
•	 Castelnuovo’s inequality: for a non-ruled surface X, χtop(X)  0, χ( X ) 

0. If X is of general type, then χ(OX ) > 0, χtop(X) ≥ 0  
≥ O ≥

is equivalent to 
K2 ≤ 12χ(OX ). 

•	 Bogomolov-Miyaoka-Yau inequality (conjectured by the first two, proved 
by Yau): K2 

	   
≤ 9χ(OX ). 

• Persson: All values for K2 ≤ 8χ actually occur. 
•	 Mumford, Hirzebruch: ∃ surfaces for which K2 = 9χ(OX ). 

2. Moduli 

First, in the case of κ = −∞, we have surfaces ruled over a curve C, whose 
moduli we can study by studying vector bundles of rank 2 on C. One finds that 
for g  2, there are 3g  3 moduli (coming from stable vector bundles). Over 1 , ≥ − P
the moduli are a discrete set of points (the Hirzebruch surfaces Fn or Σn). Over 
an elliptic curve, any rank 2 vector bundle is either decomposable, the extension 
of OC by OC , or the extension of OC (p) by OC for p ∈ E. 

Next, for κ = 0, we have different moduli depending on the subcategorization. 
For abelian surfaces with polarization, there exist Siegel modular varieties coming 
from quotienting by a discrete subgroup of the symplectic group. For K3 surfaces 
(marked and with polarization), one obtains a moduli space as an open subset 
of a quadric in CP20 (a bounded, symmetric domain of type IV). Moding out by 
the marking, one obtains a quotient by a discrete subgroup of the orthogonal. 
Similarly, one obtains algebraic varieties characterising the moduli for Enriques 
surfaces. Lastly, for hyperelliptic and bielliptic surfaces, our previous explicit 
description allows one to describe the moduli relatively easily. 

Then, for honestly elliptic surfaces, one can describe the moduli either by 
functional and homological invariants, or by the Weierstrass equations. 

For surfaces of general type, however, little is known. 


