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ALGEBRAIC SURFACES, LECTURE 21 

LECTURES: ABHINAV KUMAR 

From last time: f : X B is an elliptic/quasi-elliptic fibration, Fbi = miPi 

multiple fibers, R1f∗OX = 
→ 

L ⊕ T , for L invertible on B and T torsion. b ∈
Supp (T ) h0(OFb ) ≥ 0 h1(OFb ) ≥ 2 Fb is an exceptional/wild fiber. ⇔ ⇔ ⇔ � 
Theorem 1. With the above notation, ωX = f ∗(L−1 ⊗ ωB) ⊗OX ( aiPi), where 
0 ≤ ai < m, ai = mi − 1 unless Fbi is exceptional, and deg (L−1 ⊗ ωB ) = 
2pa(B) − 2 + χ(OX ) + �(T ), where �(T ) is its length as an OB -module. 

Proof. We have proved most of this: specifically, we have that ωX = f ∗(L−1 ⊗
ωB) ⊗ OX ( aiPi) for 0 ≤ ai < m. We have a Leray spectral sequence Epq = 2 
Hp(B, Rqf∗OX ) = ⇒ Hp+q(X, OX ). The smaller order terms give us a short 
exact sequence 

(1) 
0 → H0(OB ) → H1(OX ) → H0(R1f∗OX ) → H2(OB ) = 0 

0 → H2(OX ) → H1(R1f∗OX ) → 0 

Using this, we see that 

χ(OX ) = h0(OX ) − h1(OX ) + h2(OX ) 

= h0(OB) − h1(OB ) − h0(L ⊕ T ) + h1(L ⊕ T )
(2) 

= χ(OB ) − χ(L) − h0(T ) 

= −deg L − �(T ) 

by Riemann-Roch, so deg L = −χ(OX ) − �(T ). Since deg ωB = 2pa(B) − 2, we 
have deg (L−1 ⊗ ωB ) = 2pa(B) − 2 + χ(OX ) + �(T ). It remains to show that 
ai = mi − 1 if Fbi is not exceptional. If fact, we can prove something stronger: 
let αi be the order of OX (Pi) ⊗OPi in Pic (Pi). Then we claim that 

(1) αi divides mi and ai + 1, 
(2) h0(Pi, O(αi+1)Pi ) ≥ 2 and h0(Pi, OαiPi ) = 1, and 
(3) h0(Pi, nPi) is a nondecreasing function of n. 

Assuming this, if ai < mi − 1, then αi < mi, so miPi is exceptional by (b) and 
(c), since then h0(OmiPi ) ≥ 2. 

We now prove the claim. If m > n ≥ 1, then OmP → OnP → 0 gives 
H1(P, OmP ) → H1(P, OnP ) → 0, implying that n �→ h1(P, OnP ) is nondecreas­
ing. But by Riemann-Roch and the definition of canonical type, χ(OnP ) = 0, so 
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h0 = h1 is also nondecreasing. Now, by the definition of αi, OX (αiPi) ⊗ OPi =
∼

OPi , implying that OX (−niPi) ⊗ OPi = OPi as well. We thus obtain an exact ∼
sequence 0 → OX (−αiPi) ⊗ OPi = OPi → O(αi+1)Pi → OαiPi → 0, inducing a 
long exact sequence 

(3)	 = H0(OPi H0(O(αi+1)Pi
0 → k ∼ ) → ) → H0(OαiPi ) → · · · 

and h0(O(αi+1)Pi ) ≥ 2. But for 1 ≤ j < αi, Lj = OX (−jPi) ⊗ OPi is an 
invertible OPi -module whose degree in each component of Pi equals 0. Since 
Lj � , H0(Lj ) = 0, and 0 → → OjPi → 0 gives H0(O(j+1)Pi =∼= OPi Lj → O(j+1)Pi ) ∼
H0(OjPi ). = = ∼ H0(OαP ) ∼ k asSince H0(OP ) ∼ k for P icoct, H0(O2P ) ∼ = = · · · 
well. 

Finally, 

= OPi(4) (OX (Pi) ⊗OPi )
mi ∼= OX (Fbi ) ⊗OPi 

∼

This is proved as follows, Since the fiber is cut out by a rational function f , 
H0(OX (Fbi ) ⊗OPi ) = 0. Via the exact sequence �

(5)	 ) 
1/f �→1/f 

00 → OX → OX (Fbi → OX (Fbi ) ⊗OFbi 
→ 

we get a global section of OX (Fbi ) ⊗ OFbi 
. But this also has degree 0 along the 

components. So it must be trivial, but what we proved for icoct. We also have 

OX ((ai + 1)Pi) ⊗OPi 
∼

(6)	
= ωX ⊗OX (Pi) ⊗OPi 

= ωPi = OPi
∼ ∼

implying that αi|ai + 1 as desired.	 � 

Corollary 1. K2 = 0. 

Corollary 2. If h1(OX ) ≤ 1, then either ai + 1 = mi or ai + αi + 1 = mi. 

Proof. Exercise.	 � 

Remark. Raynaud showed that mi/αi is a power of p = char(k) (or is 1 if 
char(k) = 0). Therefore, there are no exceptional fibers in characteristic 0. 

1. Classification (contd.) 

If f : X B is an elliptic/quasi-elliptic fibration, then →	 � 
(7) ωX = f ∗(L−1 ⊗ ωB) ⊗OX ( aiPi), 0 ≤ ai < mi 

If n ≥ 1 is a multiple of m1, . . . ,mr, then 

(8) H0(X, ω⊗n) = H0(B, L−n ⊗ ωn ai(n/mi)bi))X B ⊗OB( 

Now we recall the 4 classes of surfaces: 
(a) ∃ an integral curve C on X s.t. K	 C < 0.· 
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(b) K ≡ 0. 
(c) K2 = 0, K C ≥ 0 for all integral curves C, and ∃C � s.t. K C � > 0.· · 
(d) K2 > 0, and K C ≥ 0 for all integral curves C.· 

Lemma 1. If X is in (a), then κ(X) = −∞, i.e. pn = 0 for all n ≥ 1. If X is 
in (b), then κ(X) ≤ 0. If X has an elliptic or quasielliptic fibration f : X B,� 

ai 

→
and if we let λ(f) = 2pa(B) − 2 + χ(OX ) + �(T ) + , then X is not in class 

mi 

(d) and 
• X is in (a) iff λ(f) < 0, in which case κ(X) = −∞, 
• X is in (b) iff λ(f) = 0, in which case κ(X) = 0, 
• X is in (c) iff λ(f) > 0, in which case κ(X) = 1. 

Proof. If K C < 0, then X is ruled, and κ(X) = We did this before, · ∞. 
and there is an easy way to see that pn = 0 for all n ≥ 1. For every divisor 
D ∈ Div (X), ∃nD s.t. |D + nK| = ∅ for n > nD. (Since (D + nK) · C = 
D C + n(K C) becomes negative eventually. Now C is effective. We claim that · · 
C2 ≥ 0, so by our useful lemma, 6 |D + nK| can’t have an effective divisor. If 
C2 < 0, then C K < 0 would imply that C was an exceptional curve of the first · 
kind, contradicting the minimality of X. Thus, C2 ≥ 0.) In particular, D = K 
gives |nK| = ∅ for large enough n, implying that |nK| = ∅ for all n (since 
pn < pmn). 

Next, assume K ≡ 0 (case (b)). If pn ≥ 2, then dim |nK| ≥ 1 = ⇒ ∃ a 
strictly positive divisor Δ > 0 in |nK|. Then Δ · H > 0 for a hypersurface 
section, contradicting nK H = 0 since K ≡ 0. So pn ≤ 1 for all n, implying · 
that κ(X) ≤ 0. 

Now assume X has an elliptic/quasielliptic fibration, and let M = f∗(ωX ) = 
L−1 ⊗ ωB from last time. Then M has degree λ(f). Let H be a very ample 
divisor on X. Then π = f |H : H → B is some finite map of degree = H · F > 0. 
Now n(K · H) = deg (ωn |H ) = deg H (π

∗M) = (deg π)(deg BM) = (H · F )λf . SoX 
if λf < 0, then K H < 0 and X is in (a). · 

Similarly, λ(f) = 0 = K H = 0 for every irreducible hyperplane section ⇒ · 
H, and any curve C can be written, up to ∼, as the difference of 2 such. This 
implies that K · C = 0 ∀ C = ⇒ K ≡ 0. Lastly, λ(f) > 0 = ⇒ K · C > 0 for 
all horizontal irreducible C. For vertical C, K C = 0 by the formula for K,· 
implying that K C ≥ 0 for all C integral, (K2) = 0 by the formula, implying · 
that we are in class (c). � 

Let X be a minimal surface with K2 = 0, pg ≤ 1 (in particular, every surface in 
class (b) is of this form. Then Noether’s formula gives 10 − 8q + 12pg = b2 + 2Δ. 
Since pg ≤ 1, 0 ≤ Δ ≤ 2pg ≤ 2, also Δ = 2(q − s) is even, we obtain the following 
possibilities. 

(1) b2 = 22, b1 = 0, χ(OX ) = 2, q = 0, pg = 1, Δ = 0. 
(2) b2 = 14, b1 = 2, χ(OX ) = 1, q = 1, pg = 1, Δ = 0. 
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(3)	 b2 = 10, b1 = 0, χ(OX ) = 1, and either q = 0, pg = 0, Δ = 0 or q = 1, pg = 
1, Δ = 2. 

(4)	 b2 = 6, b1 = 4, χ(OX ) = 0, q = 2, pg = 1, Δ = 0. 
(5)	 b2 = 2, b1 = 2, χ(OX ) = 0, and either q = 1, pg = 1, Δ = 0 or q = 2, pg = 

0, Δ = 2. 

Note. If X is in class (b) and pg = 1, then K ∼ 0 (because K = 0, H0(K) =� 0 
imply that K ∼ 0.). 

Let’s deal with case 4 of class (b). 

Proposition 1. Let X be minimal in class (b), and b2 = 2, b1 = 2. Then s = 1, 
Alb (X) is an elliptic curve, and X Alb (X) gives an elliptic/quasielliptic →
fibration. 

Proof. Let’s see that the fibers of f are irreducible. If not, we would have ρ > 
2(F, H, component of F ) and b2 ≥ ρ > 2, contradicting b2 = 2. Now, to see that 
the fibers are not multiple, note that χ(OX ) = 0 from the list. 

(9) deg (L−1 ⊗ ωB) = 2pa(B) − 2 + χ(OX ) + �(T ) = �(T ) ≥ 0 

Since ωX = f ∗(L−1 ⊗ωB)⊗OX ( aiPi) ≡ 0, we see that �(T ) ·f−1(y)+ aiPi ≡
0. But it is an effective divisor, implying that all the ai = 0, �(T ) = 0 and thus 
ai = mi − 1 ∀ i (there are no wild fibers since T = 0). So mi = 1 ∀ i. Thus, we 
have integral fibers, which is the case of a bielliptic surface. � 


