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ALGEBRAIC SURFACES, LECTURE 21

LECTURES: ABHINAV KUMAR

From last time: f: X — B is an elliptic/quasi-elliptic fibration, F,, = m;F;
multiple fibers, R'f,Ox = L & T, for L invertible on B and T torsion. b €
Supp (T) < h°(Or,) > 0« h'(OF,) > 2 < F, is an exceptional /wild fiber.

Theorem 1. With the above notation, wx = f*(L™'®@wp)®@ Ox (> a;P;), where
0 < a; < mya; = m; — 1 unless F,, is exceptional, and deg (L™ ® wp) =
2pa(B) — 24 x(Ox) + UT'), where ¢(T) is its length as an Og-module.

Proof. We have proved most of this: specifically, we have that wy = f*(L7! ®
wp) ® Ox (> a;P;) for 0 < a; < m. We have a Leray spectral sequence E5? =
HP(B,R1f.Ox) = HP™(X,Oyx). The smaller order terms give us a short
exact sequence

o 0 — H(Op) — HY(Ox) — H(R'f,Ox) — H*(Op) =0
0 — H*(Ox) — HY(R'f.Ox) — 0
Using this, we see that

X(Ox) = hO(O_)() — hl(Ox) + h2(0)()

= h’(Op) — W' (Op) —K(LOT)+h' (LD T)

= X(0p) = x(L) = K(T)

= —deg L — {(T)
by Riemann-Roch, so deg L = —x(Ox) — ¢(T'). Since degwp = 2p,(B) — 2, we
have deg (L™! ® wp) = 2p4(B) — 2 + x(Ox) + ¢(T). It remains to show that

a; = m; — 1 if Fp, is not exceptional. If fact, we can prove something stronger:
let a; be the order of Ox(P;) ® Op, in Pic (P;). Then we claim that

(1) a; divides m; and a; + 1,

(2) h°(P;, O(ai+1)p,) > 2 and h°(P;, Op,p) = 1, and

(3) h°(P;,nP;) is a nondecreasing function of n.

(2)

Assuming this, if a; < m; — 1, then «a; < m;, so m;P; is exceptional by (b) and
(c), since then h°(O,,.p,) > 2.

We now prove the claim. If m > n > 1, then O,,p — O,p — 0 gives
HY(P,O,,p) — H'(P,O,p) — 0, implying that n — h'(P,O,p) is nondecreas-
ing. But by Riemann-Roch and the definition of canonical type, x(O,p) = 0, so
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[

hY = ' is also nondecreasing. Now, by the definition of a;, Ox(; P;) ® Op, =
Op,, implying that Ox(—n;P;) ® Op, = Op, as well. We thus obtain an exact
sequence 0 — Ox(—a;P;) ® Op, = Op, = O(a,41)p, — Oa,p, — 0, inducing a
long exact sequence

(3) 0—k= HO(OP@') - HO(O(ai+1)Pi) - HO(O%‘P'

[3

and h°(O1yp) = 2. But for 1 < j < a;,L; = Ox(—jP) ® Op, is an
invertible Op.-module whose degree in each component of P; equals 0. Since
L; % Op, H(L;) = 0, and 0 — L; — O(j41)p, = Ojp, — 0 gives H(Oj11)p,) =
H°(O,p,). Since H°(Op) = k for P icoct, H*(Ogp) = -+ = HY(Oup) = k as
well.

Finally,

) — -

This is proved as follows, Since the fiber is cut out by a rational function f,
H°(Ox(F,,) ® Op,) # 0. Via the exact sequence

(5) 0— Oy — Ox(F,) "= Ox(F) © Or, —0

we get a global section of Ox(F},) ® Op,,. But this also has degree 0 along the
components. So it must be trivial, but what we proved for icoct. We also have

(©) Ox((a; +1)P,) ® Op, 2 wx ® Ox(P;) ® Op,

> wp & Op,
implying that a;|a; + 1 as desired. O
Corollary 1. K? = 0.
Corollary 2. If h'(Ox) < 1, then either a; +1 = m; or a; + a; + 1 = m,.
Proof. Exercise. 0

Remark. Raynaud showed that m;/q; is a power of p = char(k) (or is 1 if
char(k) = 0). Therefore, there are no exceptional fibers in characteristic 0.

1. CLASSIFICATION (CONTD.)

If f: X — B is an elliptic/quasi-elliptic fibration, then

(7) Wy :f*(L_1®wB)®OX(ZaiPi),O < a; <m
If n > 1 is a multiple of mq, ..., m,, then
(8) H(X,w") = H'(B,L™" @ wjy ® Op() _ ai(n/mi)b;))

Now we recall the 4 classes of surfaces:
(a) 3 an integral curve C' on X s.t. K -C < 0.
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(b) K =0.
(¢) K2 =0, K-C >0 for all integral curves C, and 3C" s.t. K -C" > 0.
(d) K2 >0, and K - C > 0 for all integral curves C.

Lemma 1. If X isin (a), then k(X) = —o0, i.e. p, =0 foralln > 1. If X is
in (b), then k(X) < 0. If X has an elliptic or quasielliptic fibration f : X — B,
and if we let A(f) = 2pa(B) — 2+ x(Ox) + U(T) + >_ =, then X is not in class
(d) and

o X isin (a) iff \(f) <0, in which case k(X) =

e X isin (b) iff \(f) =0, in which case k(X) =

o X isin (¢) iff N(f) > 0, in which case k(X) =

Proof. If K - C' < 0, then X is ruled, and x(X) = oo. We did this before,
and there is an easy way to see that p, = 0 for all n > 1. For every divisor
D € Div(X),3np st. |D+nK| = @ for n > np. (Since (D +nK) -C =
D-C+n(K-C) becomes negative eventually. Now C' is effective. We claim that
C? > 0, so by our useful lemma, 6|D + nK| can’t have an effective divisor. If
C? <0, then C - K < 0 would imply that C' was an exceptional curve of the first
kind, contradicting the minimality of X. Thus, C? > 0.) In particular, D = K
gives |[nK| = @ for large enough n, implying that |[nK| = @ for all n (since
Pn < Pmn)-

Next, assume K = 0 (case (b)). If p, > 2, then dim |[nK| > 1 = Ja
strictly positive divisor A > 0 in |nK|. Then A - H > 0 for a hypersurface
section, contradicting nK - H = 0 since K = 0. So p, < 1 for all n, implying
that x(X) <0.

Now assume X has an elliptic/quasielliptic fibration, and let M = f.(wx) =
L™!' @ wp from last time. Then M has degree A\(f). Let H be a very ample
divisor on X. Then m = f|g : H — B is some finite map of degree = H - F' > 0.
Now n(K - H) = deg (w%|p) = deg y(m*M) = (degm)(deg M) = (H - F')\s. So
if \f <0, then K- H <0 and X is in (a).

Similarly, A(f) = 0 = K - H = 0 for every irreducible hyperplane section
H, and any curve C' can be written, up to ~, as the difference of 2 such. This
implies that K - C = 0V(C — K =0. Lastly, A(f) >0 = K -C > 0 for
all horizontal irreducible C. For vertical C', K - C' = 0 by the formula for K,
implying that K - C' > 0 for all C integral, (K?) = 0 by the formula, implying
that we are in class (c). O

Let X be a minimal surface with K = 0,p, < 1 (in particular, every surface in
class (b) is of this form. Then Noether’s formula gives 10 — 8¢ + 12p, = by + 2A.
Since p, < 1,0 < A < 2p, < 2, also A = 2(qg—s) is even, we obtain the following
possibilities.

(1) by =220y =0,x(Ox) =2,g=0,p, =1,A=0.

(2) bg = 147b1 = 2,X(Ox) = 17q = 17pg = ]_,A =0.
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(3) by =10,b; =0, x(Ox) =1, and either ¢ =0,p, =0,A=0o0rg=1,p, =
1L,A=2.

(4) b2:67b1 :47X(OX):O7q:27pg: 17A:O

(5) by =2,b; =2,x(Ox) =0, and either g =1,p, =1,A=0o0r g =2,p, =
0,A =2

Note. If X is in class (b) and p, = 1, then K ~ 0 (because K = 0, H*(K) # 0
imply that K ~ 0.).

Let’s deal with case 4 of class (b).

Proposition 1. Let X be minimal in class (b), and by = 2,b; = 2. Then s =1,
Alb (X)) is an elliptic curve, and X — Alb(X) gives an elliptic/quasielliptic
fibration.

Proof. Let’s see that the fibers of f are irreducible. If not, we would have p >
2(F, H,component of F') and by > p > 2, contradicting by = 2. Now, to see that
the fibers are not multiple, note that x(Ox) = 0 from the list.

(9) deg (L™' @ wp) = 2pa(B) — 2+ x(Ox) + ((T) = {(T) > 0

Since wx = f*(L'@wp)@0x (> a; P) = 0, we see that £(T)- f~Hy)+>. a; P =
0. But it is an effective divisor, implying that all the a; = 0,¢(T") = 0 and thus
a; = m; — 1Y (there are no wild fibers since T' = 0). So m; = 1Vi. Thus, we
have integral fibers, which is the case of a bielliptic surface. O



