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ALGEBRAIC SURFACES, LECTURE 20 

LECTURES: ABHINAV KUMAR 

Last time we stated the following theorem: 

Theorem 1. Let X be a minimal surface with K2 = 0, K C ≥ 0 for all curves C·
on X. Then either 2K ∼ 0 or X has an icoct (indecomposable curve of canonical 
type). 

Proof. First, assume |2K| =� ∅. Let D ∈ |2K|: then either D = 0, in which case 
2K ∼ 0 and we’re done, or else D = > 0. Then D K = 2K2 = 0. So � niEi · 

ni(K Ei) = 0. But K Ei ≥ 0 for all i by assumption. This forces K Ei = 0 · · · 
for all i, so D Ei = 0 for all i as well. Thus, D is of canonical type. We get an · 
icoct by decomposing D. 

On the other hand, if 2K = ∅, K2 = 0, so RR gives h0(2K) + h0(−K) ≥
χ(OX ). By assumption, 

|
p2 =
| 

h0(2K) = 0, so pg = 0 as well, implying that 
χ(OX ) = 1 − q = ⇒ h0(−K) ≥ 1 − q. 

If q = 0 then H0(−K) =� 0. Letting D ∈ |−K|, if D = 0 then K ∼ 0 = ⇒
2K ∼ 0, a contradiction. If D > 0, then for H ample, D · H ≥ 0 = ⇒ K · H < 0 
contradicting our hypothesis. So assume q ≥ 1, pg = 0. Noether’s formula gives 
10 − 8q = b2 = ⇒ q ≤ 1 = ⇒ q = 1. Let f : X → B = Alb (X) be 
the Albanese map, which in this case must be a surjective map onto an elliptic 
curve. Let Fb = f−1(b) be the fiber over b ∈ B. If pa(Fb) = 0, then F 2 = 0 gives b 
Fb · K = −2 by the genus formula, a contradiction. 

If pa(Fb) = 1, Fb is an icoct and we are done. So assume pa(Fb) ≥ 2. The 
genus formula gives K Fb = 2pa(Fb) − 2 ≥ 2. For any closed point a ∈ B � {b},· 
let Fa be the fiber over a. Then we have a short exact sequence 

(1) 0 → OX (2K + Fa − Fb) → OX (2K + Fa) → OFb (2K| ) → 0Fb 

Note that OX (Fa = OFb . Now, let’s check Fb − Fa − K = ∅. Otherwise,)⊗OFb | | 
= F 2we have D ∼ Fb − Fa − K ≥ 0. Then K ∼ Fb − Fa − D and K Fb − Fa ·· b 

Fb − D Fb = −D Fb ≤ 0 (because D Fb = D Fc ≥ 0, since we can move the · · · · 
fiber) contradicting K Fb ≥ 2. Therefore H2(2K +Fa −Fb) = 0 by Serre duality, ·
and Riemann-Roch gives χ(2K + Fa − Fb) = χ(OX ) = 1 − q + pg = 0. So either 
2K + Fa − Fb = ∅, or H i(OX (2K + Fa − Fb)) = 0 for i = 0, 1, 2. In the first 
case, we get the desired icoct by taking an effective divisor in |2K + Fa − Fb|. 
So assume the latter case for all a ∈ B � {b}. Then H0(OX (2K + Fa)) →
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H0(OFb (2K|Fb )) is an isomorphism. Fix a nonzero section s ∈ H0(OFb (2K|Fb )), 
which exists because Fb has genus ≥ 2 and deg (2K|Fb ) = 2(K ·Fb) = 2(2pa(Fb)−
2), so Riemann-Roch on Fb gives a global section. 

Let Δ = div Fb (s). For every a ∈ B � {b}, lift s uniquely to a section sa ∈
H0(OX (2K + Fa)). Let Da = div X (sa). This is an algebraic family of effective 
divisors {Da}a∈B�{b} s.t. Da|Fb = Δ for all a. We cannot have Da ∼ Da

� for 
a �= a� (else Fa ∼ Fa

� = ⇒ a ∼ a� on the elliptic curve � B, which is impossible). 
So in particular, Da =� Da� , and X is the closure of a=� b Da. Letting Db be 
the specialization of Da as a b, we find that it must have Fb among its →
components, since Da|Fb = Δ is supported on a fixed finite set of points on Fb. 
So Db = Fb + Db

� for some Db
� ≥ 0. Since Db 2K + Fb , we get Db

� 2K , 
contradicting |2K| = 0. �

∈ | | ∈ |
�
|

Corollary 1. If X is a minimal surface with K2 = 0, K C ≥ 0 for all curves C· 
on X. Then either 2K ∼ 0 or ∃ an elliptic/quasi-elliptic fibration f : X B.→ 

1. More on elliptic/quasi-elliptic fibrations 

Let f : X B be an elliptic/quasi-elliptic fibration. By definition, k(B)→
is algebraically closed in k(S), so all but finitely many fibers are geometrically 
integral, and there are a finite number of points b1, . . . , br ∈ B s.t. Fb = f−1(b) 
is an icoct for b ∈ B � {b1, . . . , br}. Furthermore, Fbi = f−1(bi) = miPi, with Pi 

an icoct (since f∗OX = OB , by Stein factorization all the fibers are connected). 
The ones for which mi ≥ 2 are called multiple fibers of the fibration. 
Now, R1f∗OX is a coherent OB-module, and R1f∗OX ⊗ k(b) = H1(Fb, Ob) for 

all b ∈ B (by the base change theorem). It is clear that, for b ∈ B � {b1, . . . , br}, 
h1(Fb, OFb ) ∼) = 1 (since H1(Fb, OFb = H0(Fb, ωFb )

∨, where ωFb is the dualizing 
sheaf of Fb, and since ωb 

∼ , as Fb is an icoct and h0(Fb, OFb ) = 1). Since B= OFb 

is a curve, R1f∗OX = L ⊕ T for L locally free of rank 1 (invertible) and T torsion 
(supported at finitely many points). Also Supp T ⊂ {b1, . . . , br}, and T is an 
OB-module of finite length. Now Riemann-Roch gives χ(OX ) = χ(OX (−Fb)) for 
any b (since Fb · Fb = 0 and K Fb = 0 from the genus formula. Thus, χ(OFb ) = 0 · 
for any b, using the short exact sequence 0 → OX (−Fb) → OX → OFb → 0, 
and h0(OFb ) = h1(OFb ), and b ∈ Supp T ⇔ h1(OFb ) ≥ 2 ⇔ h0(OFb ) ≥ 2. 
These fibers Fb are called the exceptional or wild fibers (purely a characteristic 
p phenomenon by a theorem of Raynaud). 

Theorem 2. With the above notation, ωX = f ∗(L−1 aiPi) where ∼ ⊗ ωB ) ⊗OX ( 
Fbi = miPi for i = 1, . . . , r are all the multiple fibers of f and 0 ≤ ai < mi (ai = 
mi −1 unless Fbi is exceptional) and deg (L−1 ⊗ωB) = 2pa(B)−2+χ(OX )+�(T ), 
where �(T ) is the length of T as an OB -module. 

Proof. First, let’s see that K is vertical. We show this by finding an effective 
divisor D linearly equivalent to K + Fai for some finite set of points {ai} ⊂ B. 
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Assume this for the moment. Then D Fb = 0 for any closed point b ∈ B since· 
Fai Fb = 0 and K Fb = 0 (Fb is of canonical type). So it forces all components · · 
of D to be contained in the fibers of f , implying that K has the same property. 

We can write K ∼ �j Fyj + D for some effective D not containing any 
fibers. Letting D1, . . . , Ds be the connected components of D, we have that 
each Di is supported (and contained in) some fiber Fzi . Thus, D2 ≤ 0. Ifi 
Di 

2 < 0 for some i, then Di E < 0 for some component E of Di. Then E is· 
a component of the fiber Fzi which must be reducible, implying that E2 < 0. 
Also, K E = �j Fyj E + D E = D E = E = E < 0 and E isDi · Di ·· · · · 
an exceptional curve, contradicting minimality. So D2 = 0 for all i, and Di is a i � 
rational multiple of the fiber Fzi , implying that ωX = aiPi) for ∼ f ∗(M) ⊗ OX ( 
0 = ai ≤ mi, ai ∈ Z. 

Now we demonstrate the first step, i.e. getting K + Fai equivalent to an 
effective divisor. If Fb is not a multiple fiber, then ωFb = (Fb is an icoct), ∼ OFb 

which gives via adjunction ωX ⊗ OX (Fb) ⊗ OFb = . Also, OX (Fb) ⊗ OFb is∼ OFb 

trivial (since it has degree 0 along the components and has a global section). 
So ωX = as well. So take a1, . . . , am to be m general points of B⊗ OFb 

∼ OFb � 
(s.t. Fai are not multiple fibers). Then we have 0 ωX Fai )� → → ωX ⊗OX ( → 
OFai 

→ 0 (for one ai, tensoring 0 → OX → OX (Fa) → OFa → 0 by ωX , and 
using the Chinese Remainder Theorem for more ai). We get a cohomology exact 
sequence 

(2) 0 → H0(ωX ) → H0(ωX ⊗OX ( Fai )) → H0(Fai ) → H1(ωX ) → · · · 

Now h1(ωX ) is constant and ⊕H0(Fai ) had dimension m, so for large enough m, 
we find that |K + Fai | is not empty. � 

Getting back to ωX 
∼ aiPi), pushing forward by f∗ gives = f ∗(M) ⊗OX ( 

(3) f∗(ωX ) = M ⊗ f∗OX ( aiPi) 

by the projection formula. Now, claim that f = � �we ∗(OX ( aiPi)) ∼ OB. We 
have OX (mi − 1)Pi). So it is enough to show that � ⊂ OX ( aiPi) ⊂ OX ( 
f∗(OX ( (mi = OB . This is local on B, so it is enough to− 1)Pi)) ∼ show 
f∗(OX ((mi − 1)Pi)) ∼ OB for a single i. ∗OX (miPi) ⊗= This is isomorphic to f

= ∗OX (−Pi), since f ∗(OB (bi)) = OX (miPi) using the pro-OX (−Pi) ∼ OB(bi) ⊗ f
jection formula. It is enough to show that f = OB(−bi). We have ∗OX (−Pi) ∼
f∗OX (−mPi) ∼ OB(−bi) ⊂ f∗OX (−Pi) ⊂ OB and OB/OB (−bi) has length 1. = 
Thus, it is enough to show f∗(u) : f∗(OX (−Pi)) → f∗OX 

∼ is not an isomor­= OB 

phism (where u : OX (−Pi) → OX ). 
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We have the diagram 

f∗(OX (−Pi)
⊗mi ) ∼ 

f∗(OX (−miPi)) ∼= OB(−bi) 

f∗(u⊗mi )(4) (f∗u)⊗mi 

(f∗OX )
⊗mi 

∼ 
f∗(O⊗mi = OBX ) ∼

If f∗u is an isomorphism, then the left arrow (f∗u)⊗mi is an isomorphism, implying 
that the right one is as well, which is a contradiction since OB (−bi) is strictly 
a subsheaf of OB with nonzero quotient. So f∗(u) is not an isomorphism, and 
f∗(ωX ) = M . 

By Grothendieck’s relative duality theorem, noting that the dualizing complex 
of f : X → B is ωX/B 

∼
B ), we have, for L� an invertible OX -module,= ωX ⊗ f ∗(ω−1 

that f∗(L�) and R1f∗(L
�−1 ⊗ ωX/B) are dual w.r.t. OB. So, 

(5) 

∗(L
�) ∼ OB (R

1(f ⊗ ωX/B), OB ) ∼ OB (R
1ff = Hom ∗(L

�−1 
= Hom ∗(L

�−1 ⊗ ωX ), ωB ) 

using the projection formula. Applying this to L� = ωX , we get 

M = f = Hom (R1f∗OX , ωB ) ∼ (L ⊕ T, ωB)= Hom∗ωX 
∼ OB OB

(6) 
= Hom (L, ωB) = L−1∼ OB ⊗ ωB 

so ωX = f ∗(L−1 ⊗ ωB) ⊗OX ( aiPi), 0 ≤ ai < mi. � 


