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ALGEBRAIC SURFACES, LECTURE 2

LECTURES: ABHINAV KUMAR

Remark. In the definition of (L, M) we wrote M = Ox(A — B) where A and B
are irreducible curves. We can think of this as a moving lemma.

1. LINEAR EQUIVALENCE, ALGEBRAIC EQUIVALENCE, NUMERICAL
EQUIVALENCE OF DIVISORS

Two divisors C' and D are linearly equivalent on X < there is an f € k(X)
st. C = D+ (f). This is the same as saying there is a sheaf isomorphism
Ox(C) =2 0x(D),1+— f.

Two divisors C' and D are algebraically equivalent if Ox(C) is algebraically
equivalent to Ox (D). We say two line bundles L; and Ly on X are algebraically
equivalent if there is a connected scheme T, two closed points t1,f, € T and a
line bundle L on X x T such that Lx.g,y = Ly and Ly, = Lg, with the
obvious abuse of notation.

Alternately, two divisors C' and D are alg. equivalent if there is a divisor F
on X x T, flat on T, s.t. E|;, = C and E|;, = D. We say C' ~g, D.

We say C'is numerically equivalent to D, C' = D, if C'- E = D - E for every
divisor ¥ on X.

We have an intersection pairing Div X x Div X — Z which factors through
Pic X x Pic X — 7Z, which shows that linear equivalence = num equivalence.
In fact, lin equivalence = alg equivalence (map to P! defined by (f)) and
alg equivalence = numerical equivalence (x() is locally constant for a flat
morphism, 7" connected).

Notation. Pic (X) is the space of divisors modulo linear equivalence, Pic™(X)
is the set of divisor classes numerically equivalent to 0, Pic?(X) C Pic™(X) C
Pic (X) is the space of divisor classes algebraically equivalent to 0. Num(X) =
Pic (X)/Pic7(X) and NS(X) = Pic (X)/Pic?(X).

1.1. Adjunction Formula. Let C' be a curve on X with ideal sheaf 7.
with dual exact sequence

(2) 0—Tc—Tx ®O¢c —>NC/X:<I/I2)*—>0
1
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Taking A? gives wx ® Oc = Ox(—C)|c ® Qo or Ko = (Kx + C)|¢ so deg Ko =
29(C) — 2 = C.(C + K) (genus formula). Note: C? = deg (Ox(C) ® O¢) by
definition. Z/Z? is the conormal bundle, and is = O(—C) ® O¢, while N/ x is
the normal bundle = O(C) ® O¢.

Theorem 1 (Riemann-Roch). x(£) = x(Ox) + 5(L* — L - wx).

Proof. L1 LOwy' = x(Ox) — x(L£) — x(wx ® L7Y) + x(wx). By Serre duality,
X(Ox) = x(wx) and y(wx ® L7) = x(L). So we get that the RHS is 2(x(Ox) —
X(£)) and thus the desired formula. O

As a consequence of the generalized Grothendieck-Riemann-Roch, we get

Theorem 2 (Noether’s Formula). x(Ox) = 15(ci+¢2) = 55 (K2 4c3) where ¢y, ¢
are the Chern classes of Tx, K is the class of wx, ¢ = bg—by+by—bs+by = e(X)
is the Euler characteristic of X. See [Borel-Serre], [Grothendieck: Chern classes],
[Igusa: Betti and Picard numbers], [SGA 4.5], [Hartshorne].

Remark. 1If H is ample on X, then for any curve C' on X, we have C'- H > 0
(equals = - (degree of C'in embedding by nH) for larger n).

1.2. Hodge Index Theorem.

Lemma 1. Let Dy, Dy be two divisors on X s.t. h°(X, Dy) # 0. Then h°(X, D) <
(X, Dy + Ds).

Proof. Let a # 0 € H°(X, Dy). Then H°(X, D) % H(X, D) ®; H(X, Dy) —
Hy(X, Dy + Ds) is injective. O

Proposition 1. If D is a divisor on X with D* > 0 and H is a hyperplane
section of X, then exactly one of the following holds: (a) (D - H) > 0 and
h°(nD) — o0 asn — oo. (b) (D-H) <0 and h°(nD) — oo as n — —oo.

Proof. Since D? > 0, as n — 400 we have

(3) R’(nD) + h°(K —nD) > %n2D2 - %n(D - K) 4+ x(0x) — o

We can’t have h®(nD) and h°(K —nD) both going to 0o as n — 0o or n — —00
(otherwise h’(nD) # 0 gives h°(K —nD) < h°(K), a contradiction). Similarly,
hY(nD) can’t go to oo both as n — oo and as n — —oo. Similarly for h°( K —nD).
Finally, note that h°(nD) # 0 implies (nD - H) > 0 and so D - H > 0. O

Corollary 1. If D is a divisor on X and H is a hyperplane section on X s.t.
(D-H)=0 then D* <0 and D* =0« D = 0.

Proof. Only the last statement is left to be proven. If D # 0 but D? = 0, then IF
on X s.t. D.E+#0. Let B' = (H*)E—(E-H)H, and get D-E' = (H?)D-E #0
and H - £ = 0. Thus, replacing F with E’, we can assume H - E = 0. Next, let
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D' =nD+E,soD'-H=0and D? =2nD-E+ E? Takingn >>0if D-E > (0
and n << 0if D-E <0, we get D> >0 and D’- H = 0, contradicting the above
proposition. [

Theorem 3. (HIT): Let NumX = Pic X/Pic"X. Then we get a pairing NumX x
NumX — Z. Let M = NumX ®z R. This is a finite dimensional vector space
over R of dimension p (the Picard number) and signature (1,p — 1).

Proof. Embed this in f-adic cohomology H?*(X,Q,(1)) which is finite dimen-
sional, and C.D equals C'U D under

(4) H?*(X,Qu(1)) x H*(X,Qu(1)) — H* (X, Qu(2)) 2 Q,

The map NumX > C — [C] € H? is an injective map. The intersection numbers
define a symmetric bilinear nondegenerate form on M (= NumX ®z R). Let h
be the class in M of a hyperplane section on X. We can complete to a basis for
M, say h = Hy, hy,...,h,st. (h,h;) =0fori>2 (h;,h;) =0 for i+ j. By the
above, (-, ) has signature (1, p—1) in this basis. Therefore, if E is any divisor on
X s.t. B2 > 0, then for every divisor D on X s.t. D-E =0, we have D?> =0. [0

1.3. Nakai-Moishezon. Let X/k be a proper nonsingular surface over k. Then
L is ample < for (£ - L) > 0 and for every curve C' on X, (£ - Ox(C)) > 0.
Note: we define the intersection number of £ - M to be the coefficient of ny - ngy
in y(£™ @ M") (check that this is bilinear, etc., and that it coincides with the
previous definition).

Proof. Sketch when X is projective. = is easy. For the converse, x(L") — oo
as n — oo (Riemann-Roch, or by defn). Replace £ by L" to assume £ =
Ox(D), D effective.

(5) 0—=L" 1B L - L'"®0p —0

L"® Op = L"|p is ample on D (since L - D = L* > 0) so H'(L"|p) = 0 for
n>>0.

(6) H(L") — HY(L"|D) — HY (L") — HY(L") — 0

forn >>0 = R' (L") < h'(L" ) so h! (L") stabilizes and the map H!'(L"!) —
H' (L") is an isomorphism. So H°(L|p) — H°(L"|p) is surjective for n >> 0.
Taking global sections 57, ...,3; generating £"|p and pulling back to H°(L"),
we get generators sg,...,sp. Get f: X — PF f*(Op(1)) = L™ f is a finite
morphism (or else 3C C X with f(C) = x = C - L = 0, a contradiction).
Opr(1) is ample = L™ is ample = L is ample. d
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1.4. Blowups. Let X be a smooth surface, p a point on X. The blowup X5X
at p is a smooth surface s.t. X ~ 77 '(p) — X ~ {p} is an isomorphism and
77 1(p) is a curve = P! (called the exceptional curve). We explicitly construct
this as follows: take local coordinates at p, i.e z,y € m,Ox ), defined in some
neighborhood U of p. Shrink U if necessary so that p is the only point in U
where x y both vanish. Let U C U x P! be defined by z¥ —yX = 0. U —
Uzx,y,x : y — z,y is an isomorphism on U~ (x =y =0) to U~ {p} and
the preimage of p is & P!. Patch/glue with X \ {p} to get X. Easy check: X
is nonsingular, £ = P! is the projective space bundle over p corresponding to
m,,/m2. The normal bundle Ny is Op(—1).

Note: this is a specific case of a more general fact (Hartshorne 8.24). For
Y C X a closed subscheme with corresponding ideal sheaf Z, blow up X along
Y to get the projective bundle Y’ — Y given by P(Z/Z?), and overall blowup

(7) X =Proj PT1405(1) =T =7""T0x

I/I2 OX/( )SO Ny,X—Oyl( )

If C'is an irreducible curve on X passing through P with multiplicity m, then
the closure of 771(C' ~ {p}) in X is an irreducible curve C called the strict
transform of C. 7*C' defined in the obvious way: think of C' as a Cartier divisor,
defined locally by some equation, and pull back up 7# : Ox — Og, which will
cut out 7*C on X.

Lemma 2. 7°C = C + mkE.

Proof. Assume C'is cut out at p by some f, expand f as the completion in the
local ring at p. O



