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ALGEBRAIC SURFACES, LECTURE 17

LECTURES: ABHINAV KUMAR

1. K3 SURFACES (CONTD.)

Remark. Note that K3 surfaces can only be elliptic over P!: on a K3 surface,
however, one can have many different elliptic fibrations, though not every K3
surface has one.

2. ENRIQUES SURFACES

Recall that such surfaces have k(X) = 0, Kx = 0,b, = 10,b; = 0, x(Ox) = 1.
A classical Enriques surface has p, = 0,¢ = 0, A = 0, while a non-classical En-
riques surface has p, = 1,¢ = 1, A = 2 (which can only happen in characteristic
2). We will discuss only classical Enriques surfaces.

Proposition 1. For an Enriques surface, wx % Ox, but w% = Ox.

Proof. Since p, = 0,wx 2 Ox. By Riemann-Roch, x(Ox(—K)) = x(Ox) +
(—K)(—2K) = x(Ox) =1, so h°(Ox(—K)) + h°(Ox(2K)) > 1. Since Kx #
Ox = Kx #Ox, h°(Ox(—K)) =0 (since —K = 0), and so h°(Ox(2K)) > 1.
Since 2K = 0,2K = 0, i.e. w% = Ox. So the order of K in Pic(X) is 2. Note
that Pic (X) = NS(X), because Pic?(X) = 0 since ¢ = 0,A = 0 for classical
Enriques surfaces. O

Proposition 2. Pic7(X) = Z/27Z, where the former object is the space of divi-
sors numerically equivalent to zero modulo linear (or algebraic) equivalence, or
similarly the torsion part of NS .

Proof. Let L = 0. By Riemann-Roch, x(L) = x(Ox)+3L-(L—K) = x(Ox) =1
Thus, h°(L) # 0 or h*(L) = h°(K — L) # 0. But both L and K — L are = 0, so
either L 2 Ox or w® L™= Oy, ie. L=w. O

Proposition 3. Let X be an Enriques surface. Suppose char(k) # 2. Then 3 an
étale covering X' of degree 2 of X which is a K3 surface, and the fundamental
group of X'/ X is Z/27.

Proof. Kx is a 2-torsion divisor class. Let (fi;) € Z'({U;}, O%) be a cocycle

representing K. in Pic (X) = H'(X, 0%). Since 2K ~ 0, (f3) is a coboundary,
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so we can write is as f = % on U;NUj,g € I'(U;,0%). Now m: X' — X
J

defined locally by z? = g; on U; given by 2 = fi;. This is étale since char(k) # 2.
wy =1 (wx) = K(X') =0 as well. Since x(Ox/) =2x(Ox) =2, X' is a K3
surface from the classification theorem. O

Remark. Over C, in terms of line bundles, take X’ = {s € L|a(S%?) = 1}, where
wx = L = O(K) is a line bundle equipped with an isomorphism « : L®? = Oy.
The map L D X' 5 s — (z,2) € X’ xx L defines a nowhere vanishing section
of m*L which is trivial, implying that n7*L = Kx is trivial. This implies that
X(Ox/) =2, and thus X' is K3.

Proposition 4. Let X' be a K3 surface and i a fixed-point-free involution s.t. it
gives rise to an étale connected covering X' — X. If char(K) # 2, then X is an
Enriques surface.

Proof. wx: = m*(wx), and since wxr = Ox/, wx = 0,k(X) = 0, and x(Ox) =
%X(OX’) = 1. By classification, X is an Enriques surface. 0J

Thus, Enriques surfaces are quotients of K3 surfaces by fixed-point free invo-
lutions.

Ezample. The smooth complete intersection of 3 quadrics in P° is a K3 surface.
Let fi = Qi(xo,x1,22) + Qi(x3, x4, 25) for ¢ = 1,2,3, where Q;, Q. are homo-
geneous quadratic forms; the f; cut out X', a K3 surface. Now, let o : P° —
P o(zg: -+ :x5) = (xog: ¥y : ¥y 1 —x3 : —14 : —x5) be an involution. Note
that o(X') = X’. Generically, the 3 conics @Q; = 0 in P? (respectively the conics
@’ = 0) have no points in common, implying that ¢’ = ox/ has no fixed points
in X', giving us an Enriques surface as above.

Theorem 1. Fvery Enriques surface is elliptic (or quasielliptic).

Proof. Exercise. O

3. BIELLIPTIC SURFACES
This is the fourth class of surfaces with x(X) =0 : by = 2,x(Ox) = 0,b; =
2, Kx = 0. There are two cases:
(1) py =0, =1,A = 0: the classical, bielliptic/hyperelliptic surface.
(2) py =1, =2,A =2, which only happens in positive characteristic.
In either case, by =2 => s =% =1 =dimAlb(X), so the Albanese variety is
an elliptic curve.

Theorem 2. The map f : X — Alb(X) has all fibers either smooth elliptic
curves, or all rational curves, each having one singular point which is an ordinary
cusp. The latter case happens only in characteristic 2 or 3.
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Proof. Let B = Alb(X), b € B a closed point, F' = F, = f~1(b). Then F? =
0,F-K=0 = p(f) =1 = f:X — B is an elliptic or quasi-elliptic
fibration (the latter only in characteristic 2 or 3). All the fibers of f are irreducible
(if we had a reducible fiber F' = > a;F;, then the classes of F, E;, and H (the
hyperplane section) would give 3 independent classes in NS (X)), implying that
by > p > 3 by the Igusa-Severi inequality, a contradiction). Similarly, one can
show that there are no multiple fibers, implying that all fibers are integral. If the
general fiber is smooth (or any closed fiber is smooth), then f*w,w € F°(B,w)
is a regular 1-form on X, vanishes exactly where f is not smooth, implying
that it is a global section of Q% /5 Whose zero locus is either empty or of pure
codimension 2. A result of Grothendieck shows that the degree of the zero locus
is (2 /k) = ¢y = 2 —2b; + by = 0, implying that f*w is everywhere nonzero
and f is smooth. 0

Remark. If all fibers of the Albanese map are smooth, call it a hyperellip-
tic/bielliptic surface. If all fibers of the Albanese map are singular, call it a
quasihyperelliptic/quasibielliptic surface.

Next, we find a second elliptic fibration.

Theorem 3. Let X be as above, f : X — B = Alb(X) a hyperelliptic or
quasihyperelliptic fibration. Then 3 another elliptic fibration g : X — P*.

Proof. (Idea) Find an indecomposable curve C' of canonical type s.t. C - F; >0
for all ¢ € B, where F; = f*(t). First note the following.

Definition 1. Let X be a minimal surface and D =Y n;E; > 0 be an effective
divisor on X. We say that D is a divisor (or curve) of canonical type if K - E; =
D-FE;, =0 foralli=1,---,r. If D is also connected, and the g.c.d. of the
integers n; is 1, then we say that D is an indecomposable divisor (or curve) of
canonical type.

Theorem 4. Let X be a minimal surface with K> = 0 and K - C > 0 for
all curves C' on X. If D is an indecomposable curve of canonical type on X,
then 3 an elliptic or quasi-elliptic fibration f : X — B obtained from the Stein
factorization of the morphism ¢i,p) : X — P(H°(Ox(nD))Y) [dual, since the
points of x are functionals on H°(Ox(nD))) for some n > 0.

We will prove this later, and for now, we return to the proof for hyperelliptic
surfaces. If we can find such a C' of canonical type, then we get an elliptic or
quasielliptic fibration ¢ : X — B’ st. (F,,Gy) > 0 for all t € B,t' € B,
where G}, — g7 (). If g where quasielliptic, then the general fiber G; would be
a rational curve, implying that f(Gy) is a point (since B is an elliptic curve)
and Gy C F, for some t, contradicting (F;,Gy) > 0. So ¢ is in fact an elliptic
fibration. Similarly, it is not hard to see that the base must be P'. How do we
find C7
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Let H be a hyperplane section, Fy a fiber of f. Let D = aH + bFj so that
D*=0,D-F, >0 (eg. b=—H? a=2(H - Fp)). Then one can prove that, for
some t € B,D; = D + F, — Fy has |Dy| # @. O

Now we have two different elliptic fibrations “transversal” to each other.

Theorem 5. Let X, X' be two minimal surfaces with k(X) > 0 and k(X') > 0,
and let ¢ : X --» X' be a birational map. Then ¢ is an isomorphism.

Proof. Let us show that ¢ is a morphism (the proof for ¢! is the same). Resolve
¢ via a sequence of blowups m; : X; — X,;_1, Xy = X to obtain a morphism
f:X,— X, f=¢omo---om, with n minimal. If n = 0, we are done, so
assume n > 0. Let E be the exceptional curve of m,. If f(E) is a point, then we
can factor through m,, contradicting minimality. Thus f(F) is a curve F. Now,
Kx - F < Ky, - EF = —1 where the inequality was proved before for blowups. So
there is a curve F with Ky - F' < 0, implying that X’ is ruled and contradicting
our hypothesis. ([l

Now, assume that the characteristic of k is neither 2 nor 3, and let X have
two fibrations f : X — B,g: X — P! as above. Let Fy, = f~1(b), F! = g '(c).
As before, we show that all the fibers of ¢ are irreducible. The reduced fibers
are elliptic curves, and the multiple fibers are multiples of elliptic curves. Let
X = {c € P'| F! is a multiple fiber of g}. This is a finite set. If ¢ € P! \ S,
then f. = f|p, : F/ — B is an étale morphism (using Riemann-Hurwitz, and
that the genus of F! equals the genus of B, 1). f. induces a homomorphism of
algebraic groups f7 : Pic®(B) — Pic’(F!) and Pic"(F!) acts canonically on F'- L
as follows. If L is a degree 0 line bundle and = € F., then (L,x) — y, where
L® Op(z) = Op(y). So we get an action of B on F! for each ¢ € P!\ S. Since
{fx} is an algebraic family of homomorphisms of algebraic groups, we get an
action o of B on g7'(P'\.S) C X. Thus, every element b € B defines a rational
map X --+ X, which we can extend to a morphism to get 0 : B x X — X.



