MIT OpenCourseWare http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 17

LECTURES: ABHINAV KUMAR

1. K3 Surfaces (contd.)

Remark. Note that K3 surfaces can only be elliptic over \mathbb{P}^1 : on a K3 surface, however, one can have many different elliptic fibrations, though not every K3 surface has one.

2. Enriques Surfaces

Recall that such surfaces have $\kappa(X) = 0$, $K_X \equiv 0$, $b_2 = 10$, $b_1 = 0$, $\chi(\mathcal{O}_X) = 1$. A classical Enriques surface has $p_g = 0$, q = 0, $\Delta = 0$, while a non-classical Enriques surface has $p_g = 1$, q = 1, $\Delta = 2$ (which can only happen in characteristic 2). We will discuss only classical Enriques surfaces.

Proposition 1. For an Enriques surface, $\omega_X \not\cong \mathcal{O}_X$, but $\omega_X^2 \cong \mathcal{O}_X$.

Proof. Since $p_g = 0, \omega_X \ncong \mathcal{O}_X$. By Riemann-Roch, $\chi(\mathcal{O}_X(-K)) = \chi(\mathcal{O}_X) + \frac{1}{2}(-K)(-2K) = \chi(\mathcal{O}_X) = 1$, so $h^0(\mathcal{O}_X(-K)) + h^0(\mathcal{O}_X(2K)) \ge 1$. Since $K_X \ncong \mathcal{O}_X \implies K_X \ncong \mathcal{O}_X$, $h^0(\mathcal{O}_X(-K)) = 0$ (since $-K \equiv 0$), and so $h^0(\mathcal{O}_X(2K)) \ge 1$. Since $2K \equiv 0, 2K = 0$, i.e. $\omega_X^2 \cong \mathcal{O}_X$. So the order of K in Pic (X) is 2. Note that Pic (X) = NS(X), because Pic (X) = 0 since (X) = 0 for classical Enriques surfaces.

Proposition 2. Pic $^{\tau}(X) = \mathbb{Z}/2\mathbb{Z}$, where the former object is the space of divisors numerically equivalent to zero modulo linear (or algebraic) equivalence, or similarly the torsion part of NS.

Proof. Let $L \equiv 0$. By Riemann-Roch, $\chi(L) = \chi(\mathcal{O}_X) + \frac{1}{2}L \cdot (L - K) = \chi(\mathcal{O}_X) = 1$ Thus, $h^0(L) \neq 0$ or $h^2(L) = h^0(K - L) \neq 0$. But both L and K - L are $\equiv 0$, so either $L \cong \mathcal{O}_X$ or $\omega \otimes L^{-1} \cong \mathcal{O}_X$, i.e. $L \cong \omega$.

Proposition 3. Let X be an Enriques surface. Suppose char(k) \neq 2. Then \exists an étale covering X' of degree 2 of X which is a K3 surface, and the fundamental group of X'/X is $\mathbb{Z}/2\mathbb{Z}$.

Proof. K_X is a 2-torsion divisor class. Let $(f_{ij}) \in Z^1(\{U_i\}, \mathcal{O}_X^*)$ be a cocycle representing K. in $\text{Pic}(X) = H^1(X, \mathcal{O}_X^*)$. Since $2K \sim 0$, (f_{ij}^2) is a coboundary,

so we can write is as $f_{ij}^2 = \frac{g_i}{g_j}$ on $U_i \cap U_j, g_i \in \Gamma(U_i, \mathcal{O}_X^*)$. Now $\pi: X' \to X$ defined locally by $z_i^2 = g_i$ on U_i given by $\frac{z_i}{z_j} = f_{ij}$. This is étale since $\operatorname{char}(k) \neq 2$. $\omega_{X'} = \pi^*(\omega_X) \implies \kappa(X') = 0$ as well. Since $\chi(\mathcal{O}_{X'}) = 2\chi(\mathcal{O}_X) = 2$, X' is a K3 surface from the classification theorem.

Remark. Over \mathbb{C} , in terms of line bundles, take $X' = \{s \in L \mid \alpha(S^{\otimes 2}) = 1\}$, where $\omega_X = L = \mathcal{O}(K)$ is a line bundle equipped with an isomorphism $\alpha : L^{\otimes 2} \xrightarrow{\sim} \mathcal{O}_X$. The map $L \supset X' \ni s \to (x,x) \in X' \times_X L$ defines a nowhere vanishing section of π^*L which is trivial, implying that $\pi^*L = K_{X'}$ is trivial. This implies that $\chi(\mathcal{O}_{X'}) = 2$, and thus X' is K3.

Proposition 4. Let X' be a K3 surface and i a fixed-point-free involution s.t. it gives rise to an étale connected covering $X' \to X$. If $char(K) \neq 2$, then X is an Enriques surface.

Proof.
$$\omega_{X'} = \pi^*(\omega_X)$$
, and since $\omega_{X'} \equiv \mathcal{O}_{X'}$, $\omega_X \equiv 0$, $\kappa(X) = 0$, and $\chi(\mathcal{O}_X) = \frac{1}{2}\chi(\mathcal{O}_{X'}) = 1$. By classification, X is an Enriques surface.

Thus, Enriques surfaces are quotients of K3 surfaces by fixed-point free involutions.

Example. The smooth complete intersection of 3 quadrics in \mathbb{P}^5 is a K3 surface. Let $f_i = Q_i(x_0, x_1, x_2) + Q_i'(x_3, x_4, x_5)$ for i = 1, 2, 3, where Q_i, Q_i' are homogeneous quadratic forms; the f_i cut out X', a K3 surface. Now, let $\sigma : \mathbb{P}^5 \to \mathbb{P}^5$, $\sigma(x_0 : \cdots : x_5) = (x_0 : x_1 : x_2 : -x_3 : -x_4 : -x_5)$ be an involution. Note that $\sigma(X') = X'$. Generically, the 3 conics $Q_i = 0$ in \mathbb{P}^2 (respectively the conics $Q_i' = 0$) have no points in common, implying that $\sigma' = \sigma_{X'}$ has no fixed points in X', giving us an Enriques surface as above.

Theorem 1. Every Enriques surface is elliptic (or quasielliptic).

Proof. Exercise. \Box

3. Bielliptic surfaces

This is the fourth class of surfaces with $\kappa(X) = 0$: $b_2 = 2, \chi(\mathcal{O}_X) = 0, b_1 = 2, K_X \equiv 0$. There are two cases:

- (1) $p_g = 0, q = 1, \Delta = 0$: the classical, bielliptic/hyperelliptic surface.
- (2) $p_g = 1, q = 2, \Delta = 2$, which only happens in positive characteristic.

In either case, $b_1 = 2 \implies s = \frac{b_2}{2} = 1 = \dim \text{Alb}(X)$, so the Albanese variety is an elliptic curve.

Theorem 2. The map $f: X \to \text{Alb}(X)$ has all fibers either smooth elliptic curves, or all rational curves, each having one singular point which is an ordinary cusp. The latter case happens only in characteristic 2 or 3.

Proof. Let B = Alb(X), $b \in B$ a closed point, $F = F_b = f^{-1}(b)$. Then $F^2 = 0$, $F \cdot K = 0 \implies p_a(f) = 1 \implies f : X \to B$ is an elliptic or quasi-elliptic fibration (the latter only in characteristic 2 or 3). All the fibers of f are irreducible (if we had a reducible fiber $F = \sum a_i E_i$, then the classes of F, E_i , and H (the hyperplane section) would give 3 independent classes in NS (X), implying that $b_2 \geq \rho \geq 3$ by the Igusa-Severi inequality, a contradiction). Similarly, one can show that there are no multiple fibers, implying that all fibers are integral. If the general fiber is smooth (or any closed fiber is smooth), then $f^*\omega, \omega \in F^0(B, \omega'_B)$ is a regular 1-form on X, vanishes exactly where f is not smooth, implying that it is a global section of $\Omega^1_{X/k}$ whose zero locus is either empty or of pure codimension 2. A result of Grothendieck shows that the degree of the zero locus is $c_2(\Omega^1_{X/k}) = c_2 = 2 - 2b_1 + b_2 = 0$, implying that $f^*\omega$ is everywhere nonzero and f is smooth.

Remark. If all fibers of the Albanese map are smooth, call it a hyperelliptic/bielliptic surface. If all fibers of the Albanese map are singular, call it a quasihyperelliptic/quasibielliptic surface.

Next, we find a second elliptic fibration.

Theorem 3. Let X be as above, $f: X \to B = \mathrm{Alb}(X)$ a hyperelliptic or quasihyperelliptic fibration. Then \exists another elliptic fibration $g: X \to \mathbb{P}^1$.

Proof. (Idea) Find an indecomposable curve C of canonical type s.t. $C \cdot F_t > 0$ for all $t \in B$, where $F_t = f^*(t)$. First note the following.

Definition 1. Let X be a minimal surface and $D = \sum n_i E_i > 0$ be an effective divisor on X. We say that D is a divisor (or curve) of canonical type if $K \cdot E_i = D \cdot E_i = 0$ for all $i = 1, \dots, r$. If D is also connected, and the g.c.d. of the integers n_i is 1, then we say that D is an indecomposable divisor (or curve) of canonical type.

Theorem 4. Let X be a minimal surface with $K^2 = 0$ and $K \cdot C \geq 0$ for all curves C on X. If D is an indecomposable curve of canonical type on X, then \exists an elliptic or quasi-elliptic fibration $f: X \to B$ obtained from the Stein factorization of the morphism $\phi_{|nD|}: X \to \mathbb{P}(H^0(\mathcal{O}_X(nD))^{\vee})$ [dual, since the points of X are functionals on $H^0(\mathcal{O}_X(nD))$) for some n > 0.

We will prove this later, and for now, we return to the proof for hyperelliptic surfaces. If we can find such a C of canonical type, then we get an elliptic or quasielliptic fibration $g: X \to B'$ s.t. $(F_t, G_{t'}) > 0$ for all $t \in B, t' \in B'$, where $G'_t - g^{-1}(t')$. If g where quasielliptic, then the general fiber G_t would be a rational curve, implying that $f(G_{t'})$ is a point (since B is an elliptic curve) and $G_{t'} \subset F_t$ for some t, contradicting $(F_t, G_{t'}) > 0$. So g is in fact an elliptic fibration. Similarly, it is not hard to see that the base must be \mathbb{P}^1 . How do we find C?

Let H be a hyperplane section, F_0 a fiber of f. Let $D = aH + bF_0$ so that $D^2 = 0$, $D \cdot F_t > 0$ (e.g. $b = -H^2$, $a = 2(H \cdot F_0)$). Then one can prove that, for some $t \in B$, $D_t = D + F_t - F_0$ has $|D_t| \neq \emptyset$.

Now we have two different elliptic fibrations "transversal" to each other.

Theorem 5. Let X, X' be two minimal surfaces with $\kappa(X) \geq 0$ and $\kappa(X') \geq 0$, and let $\phi: X \dashrightarrow X'$ be a birational map. Then ϕ is an isomorphism.

Proof. Let us show that ϕ is a morphism (the proof for ϕ^{-1} is the same). Resolve ϕ via a sequence of blowups $\pi_i: X_i \to X_{i-1}, X_0 = X$ to obtain a morphism $f: X_n \to X', f = \phi \circ \pi_1 \circ \cdots \circ \pi_n$ with n minimal. If n = 0, we are done, so assume n > 0. Let E be the exceptional curve of π_n . If f(E) is a point, then we can factor through π_n , contradicting minimality. Thus f(E) is a curve F. Now, $K_{X'} \cdot F \leq K_{X_n} \cdot E = -1$ where the inequality was proved before for blowups. So there is a curve F with $K_{X'} \cdot F < 0$, implying that X' is ruled and contradicting our hypothesis.

Now, assume that the characteristic of k is neither 2 nor 3, and let X have two fibrations $f: X \to B, g: X \to \mathbb{P}^1$ as above. Let $F_b = f^{-1}(b), F'_c = g^{-1}(c)$. As before, we show that all the fibers of g are irreducible. The reduced fibers are elliptic curves, and the multiple fibers are multiples of elliptic curves. Let $X = \{c \in \mathbb{P}^1 \mid F'_c \text{ is a multiple fiber of } g\}$. This is a finite set. If $c \in \mathbb{P}^1 \setminus S$, then $f_c = f|_{F'_c}: F'_c \to B$ is an étale morphism (using Riemann-Hurwitz, and that the genus of F'_c equals the genus of F, 1). f_c induces a homomorphism of algebraic groups $f_c^*: \operatorname{Pic}^0(B) \to \operatorname{Pic}^0(F'_c)$ and $\operatorname{Pic}^0(F'_c)$ acts canonically on $F'_c \cdot L$ as follows. If L is a degree 0 line bundle and $x \in F'_c$, then $(L, x) \mapsto y$, where $L \otimes \mathcal{O}_{F'_c}(x) \cong \mathcal{O}_{F'_c}(y)$. So we get an action of F'_c for each $F'_c \in \mathbb{P}^1 \setminus S$. Since F'_c is an algebraic family of homomorphisms of algebraic groups, we get an action F'_c is an algebraic family of homomorphisms of algebraic groups, we get an action F'_c is an algebraic family of homomorphisms of algebraic groups, we get an action F'_c is an algebraic family of homomorphisms of algebraic groups, we get an action F'_c is an algebraic family of homomorphisms of algebraic groups, we get an action F'_c is an algebraic family of homomorphisms to get F'_c is a family of homomorphism to get F'_c is a family of homomorphis