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ALGEBRAIC SURFACES, LECTURE 14

LECTURES: ABHINAV KUMAR

1. ELLIPTIC AND QUASI-ELLIPTIC SURFACES
1.1. Preliminary theorems.

Theorem 1. Let f : X — Y be a dominant morphism from an irreducible,
smooth algebraic variety X to an algebraic variety Y s.t. f* : k(Y) — k(X)
is separable and k(Y') is algebraically closed in k(X). Then 3 a nonempty open
subset V. CY s.t. Yy € V, the fiber f~1(y) is geometrically integral.

Sketch of proof. k(Y') — k(X) separable, k(Y') algebraically closed in k(X), im-
plies that the generic fiber is geometrically integral over k(Y') (see Milne’s Al-
gebraic Geometry for instance).Then some geometric reasoning shows that 3 an
open set for which this is true (i.e. the set for which f~!(y) is not geometrically

integral is a constructible set). For full proof, see Badescu, Algebraic Surfaces,
p. 87-90. O

Let K be an algebraic function field in one variable over a perfect field £ (i.e.
K is a finitely generated extension of k of transcendence degree 1) and L D K
is an extension of K s.t. K is algebraically closed in L.

Theorem 2. L/K is separable.

Corollary 1. Let f : X — Y be a dominant morphism from an irreducible
smooth variety X of dimension > 2 to an irreducible curve Y s.t. k(Y') is alge-
braically closed in k(X). Then the fiber f~1(y) is geometrically integral for all
but finitely many closed points y € Y.

Theorem 3. Let f : X — Y be a dominant morphism of smooth irreducible
varieties over an algebraically closed field of characteristic 0. Then 3 a nonempty
open V.C Y s.t. fly—gn 2 [THV) — V is a smooth morphism, i.e. for every
y €V, the fiber f~1(y) is geometrically smooth of dimension dim X — dimY .

Definition 1. A surjective morphism f : X — B from a surface X to a smooth
projective curve B is called a fibration.

Remark. f is necessarily flat (since it is surjective and B is a curve). Thus, the
arithmetic genus of the fibers F;, for b € B is constant.
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Definition 2. f is called a (relatively) minimal fibration if Vb € B, F, does not
contain any exceptional curves of the first kind.

Let f: X — B be afibration s.t. f,Ox = Op. By Zariski’s main theorem, the
fibers of f are connected. The condition is equivalent (by the second corollary)
to k(B) being algebraically closed in k(X). So all but finitely many fibers are
integral curves.

Definition 3. A fibration f is elliptic if f is minimal, f.Ox = Op, and almost
all the fibers of f are smooth curves of genus 1 (i.e. elliptic curves). If the fibers
are singular integral curves of arithmetic genus 1, f is called quasi-elliptic.

Note. Suppose f : X — B is quasi-elliptic. If any fiber of f is smooth, then the
morphism f is generically smooth, i.e. f is elliptic. So for f to be quasi-elliptic,
all the fibers must be singular. By the third theorem, quasi-elliptic fibrations
cannot exist in characteristic 0.

Proposition 1. Quasi-elliptic fibrations only exist in characteristics 2 and 3.
The general fiber of f is a rational projective curve with one singular point, an
ordinary cusp.

Proof. Let V) € B be a closed point s.t. Fj is integral. Then p,(F;) = 1, Fp
singular = F} is a rational curve with exactly one singular point which is
a node or a cusp. Let’s see that we can’t have nodes. Let ¥ be the set of
points € X where f is not smooth. Remove the (finite number of) points
bi,...,b, € B s.t. Fp, is not integral, and set Xg =X N f~HB ~ {b1,...,b.}).
Choose = € ¥, and let b = f(x). Let t be a regular local parameter at

b and wu,v regular local parameters at x € X. Then f is given locally by
f(u,v) € kl[[u,v]], a formal power series corresponding to the completed local
homomorphism k[[t] = @b — (’7;; = k[[u,v]]. Since F, is integral, we can
choose u, v s.t. f(u,v) has the form

(1) f(u,v) = G(u,v)(u* +v°) (cusp)

(2) f(u,v) = G(u,v)uv (node)

with G/(0,0) # 0. We have in case (2)

(1) g—f = G(u,v)v + g—G(u, v)uv = v(unit)
u u
(since G(0,0) # 0) and similarly % = u(unit). So % = % = 0 cuts out the single

point 0,0 and x is an isolated point of ¥j. But then f is smooth away from x in
a neighborhood of z, so by properness 3 an open set V' C B ~\ {b;} containing B
s.t. the restriction of f to f~(V) is smooth, implying that f is not quasi-elliptic.
Thus, f must have a cusp everywhere away from Fj.. Then X is the locus of all
such cuspidal points on f~1(B~{b;}) and f(u,v) = G(u,v)(u*+v*),G(0,0) = 0.
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If chark # 2, then

0 oG
(2) a—i =u |2G(u,v) + v3a—u(u,v) =0
defines, near x, a smooth curve that contains ¥,. Thus, % is a local equation of

Yo at x and Yy is smooth at each of its points. The restriction of f to ¥y is a
bijection of ¥y onto B ~\ {b;}. The intersection number ¥ - F},,b € B\ {b;} is

Yo\ Fb|)\ = dim (Ogo,x/mgbozo,x) = dlmk[[U, U]]/(fa g_i)

= dim k[[u, v]]/(u* + v*,u) = dim k[v] /v* = 3

The field extension k(B) <— k(Xy) is finite, purely inseparable (since ¥, is
irreducible) and so it has degree p™ for some m > 0 (p = chark). Thus,
pt =Yg F, =3 for any b € B ~\ {b;}, implying that chark = 3. U

(3)

2. ELLIPTIC SURFACES

Let f: X — B have generic fiber a smooth elliptic curve.

Theorem 4. If [ is smooth, 3 an étale cover B' of B s.t. f': X' = XxyB' — B
is trivial (i.e. is a product B' x F.

Sketch of proof. We have a J-map B — A! given by b — j(F). Since B is
complete, any map to A! is constant, so the j-invariant is constant on fibers.
Now eliminate automorphisms by rigidifying (i.e. use full level N structure, e.g.
with N > 4). O

Now, we’ll consider the case where we have at least one singular fiber. Given
f X — B, Tate’s algorithm computes the singular fibers of the Néron model
(minimal proper regular model). Recall the Weierstrass equation for an elliptic
curve:

(4) ZJQ + a1 Ty + agy = T2 4 asx® + asx + ag

If we consider an elliptic surface, a; € k(B), we can work locally at b € B and
use Tate’s algorithm. For B = P! a; = a,(t) € k(t). We can clear denominators
by multiplying =,y by A%, A\* to make a; € k[t]. We find that the singular fibers
C, fall into the following Kodaira-Néron classification:
Type I; C), is a nodal rational curve.
Type I,, C, consists of n smooth rational curves meeting with dual graph A, i.e.
a chain of ¢ curves forming an n-gon. -
Type I C), consists of n+5 smooth rational curves meeting with dual graph D,, 4,
i.e. a chain of n + 1 curves (multiplicity 2) with two additional curves
(multiplicity 1) attached at either end.
Type II C,, is a cuspidal rational curve.
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Type III C), consists of two smooth rational curves meeting with dual graph :4: ,
i.e. they meet at one point to order 2.
Type IV C, consists of three smooth rational curves meeting with dual graph ANQ,
i.e. they intersect at one point.
Type IV* C), consists of seven smooth rational curves meeting with dual graph Evﬁ
Type III* C), consists of eight smooth rational curves meeting with dual graph E
Type II* C), consists of nine smooth rational curves meeting with dual graph Eg
Here, :471 etc. are the extended Dynkin diagrams corresponding to the simple
groups A, etc. We present a rough idea of how to classify these: let the singular
fiber be > n;E;.
(1) K- E; =0 for all 1.
(2) Ifr =1,FE% =0,p.(E;) = 1.
(3) if r > 2, then for each 1 <i <r, B} = =2, E; 2 P! and ), n; E;E; =
2n;.
Proof. By exercise, E? < 0. If E? = 0, then F; is a multiple of the fiber and the
fiber is irreducible. If E? < 0, then K - E; < 0 is not possible (the genus formula
shows that F; would have to be exceptional), so K - E; > 0. Then

(5)
0=29(F)-2=F-(F+K)=0+F-K=)» n(K-E) = K-E;=0Vi

E} <0 = g(E)=0,E=-20=E-F=Y nj(EE;) - 2n
J#i
by the genus formula, giving the desired result. 0

We use this information to bound the graphs that can arise and classify the
singular fibers (see Silverman, Advanced Topics in the Arithmetic of Elliptic

Curves, Ch. 1V).



