MIT OpenCourseWare http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 13

LECTURES: ABHINAV KUMAR

1. Classification of Ruled Surfaces (contd.)

Recall from last time that we had $(K \cdot D) < 0$ for some effective divisor D, and we wanted to show that X was ruled.

- Step 1: There is an ample H s.t. $(K \cdot H) < 0$, so $|nK| \neq \emptyset$ for all $n \geq 1$.
- Step 2: If $(K^2) > 0$, X is rational and thus ruled.
- Step 3: Otherwise, for all n, there is an effective divisor D on X s.t. $|K+D|=\varnothing$ and dim $|D|\ge n$.
- Step 4: If $|K + D| = \emptyset$ for D effective, then there is a natural, surjective map $\operatorname{Pic}_X^0 \to \operatorname{Pic}_D^0$.
- Step 5: If D is an effective divisor s.t. $|K+D|=\varnothing$ and if $D=\sum n_i E_i$, then
 - (1) All the E_i are nonsingular, and $\sum p_a(E_i) \leq q = h^1(X, \mathcal{O}_X)$.
 - (2) $\{E_i\}$ is a configuration of curves with no loops, and E_i intersect transversely.
 - (3) If $n_i \geq 2$, then either
 - (a) E_i is rational,
 - (b) $(E_i)^2 < 0$, or
 - (c) E_i is an elliptic curve with $E_i^2 = 0$ and the normal bundle of E_i in X is nontrivial.

Proof. (1) Since $|K + E_i| \subset |K + D| = \emptyset$, we see that $\operatorname{Pic}_X^0 \to \operatorname{Pic}_D^0$ is surjective, and so $\operatorname{Pic}_{E_i}^0$ is an abelian variety and E_i is nonsingular: if it were singular, and \tilde{E} were the normalization of E, $\operatorname{Pic}_{E_i}^0$ would be an extension of $\operatorname{Pic}_{\tilde{E}}^0$ by a nontrivial affine subgroup, i.e. a combination of additive groups \mathbb{G}_a and/or multiplicative groups \mathbb{G}_m . See Serre's Algebraic Groups and Flass fields, Oort's "A construction of generalized Jacobian varieties by group extension".) Similarly, $|K + D'| \subset |K + D| = \emptyset$, where $D' = \sum E_i$, so $\operatorname{Pic}_{D'}^0$ is an abelian variety. Thus, any components E_i and E_j of D with $i \neq j$ and $E_i \cap E_j \neq \emptyset$ intersect transversely (else get subgroups isomorphic to \mathbb{G}_m inside $\operatorname{Pic}_{D'}^0$). The exact sequence

(1)
$$0 \to \mathcal{O}_{D'} \to \prod_{i} \mathcal{O}_{E_i} \to \operatorname{cok} \to 0$$

gives $h^1(\mathcal{O}_{D'}) \geq \sum h^i(\mathcal{O}_{E_i}) = \sum p_a(E_i)$ because cok is supported in dimension 0. Since $|K + D'| = \emptyset$, $H^2(\mathcal{O}_X(-D')) = 0$, so $H^1(\mathcal{O}_X) \to H^1(\mathcal{O}_{D'})$ is surjective and $\sum p_a(E_i) \leq \dim H^1(\mathcal{O}_X) = q$.

- (2) If D contains a loop, Pic (D) contains a subgroup isomorphic to \mathbb{G}_m , which is not possible since Pic $_D^0$ is an abelian variety.
- (3) If $n_i \geq 2$, then $|K + 2E_i| \subset |K + D| = \emptyset$ so $\operatorname{Pic}_{2E_i}^0$ is an abelian variety. Then the natural map $\operatorname{Pic}_{2E_i}^0 \to \operatorname{Pic}_{E_i}^0$ is an isogeny of abelian varieties, as follows: consider the exact sequences (see lemma below)

(2)
$$0 \to I = \mathcal{O}_{E_i}(-E_i|_{E_i}) \to \mathcal{O}_{2E_i} \to \mathcal{O}_{E_i} \to 0$$
$$0 \to I \xrightarrow{\alpha} \mathcal{O}_{2E_i}^* \to \mathcal{O}_{E_i}^* \to 1$$

 $(I^2 = 0, \alpha(x) = 1 + x)$. The second sequence induces

(3)

$$0 \to H^1(I) \to \operatorname{Pic}(2E_i) \to \operatorname{Pic}(E_i) \implies 0 \to H^1(I) \to \operatorname{Pic}^0(2E_i) \to \operatorname{Pic}^0(E_i)$$

If $H^1(I)$ is nonzero, the abelian variety $\operatorname{Pic}_{2E_i}^0$ would contain a copy of \mathbb{G}_a which is impossible. So $H^1(E)=0$. Then the cohomology of the first exact sequence gives $0=H^1(I)\to H^1(\mathcal{O}_{2E_i})\to H^1(\mathcal{O}_{E_i})\to 0$ ($H^2=0$ since the sheaf I is supported on a curve). So the tangent map of $\operatorname{Pic}_{2E_i}^0\to\operatorname{Pic}_{E_i}^0$ is an isomorphism and the map $\operatorname{Pic}_{2E_i}^0\to\operatorname{Pic}_{E_i}^0$ is an isogeny. In particular, $H^1(\mathcal{O}_{E_i}(-E_i|_{E_i}))=0$. If $(E_i)^2\geq 0$ then since $\operatorname{deg}(\mathcal{O}_{E_i}(-E_i|_{E_i}))=-(E_i)^2\leq 0$. Using RR, we see that either E_i is a rational curve (in which case $(E_i)^2=0$ or 1) or an elliptic curve (in which case $(E_i)^2=0$, and $\mathcal{O}_{E_i}(-E_i|_{E_i})$ is not isomorphic to \mathcal{O}_{E_i} and the normal bundle is nontrivial).

Lemma 1. If D = D' + D'' are effective divisors on X (D', D'' > 0) then there is an exact sequence $0 \to \mathcal{O}_{D''}(-D') \to \mathcal{O}_D \to \mathcal{O}_{D'} \to 0$ where $\mathcal{O}_{D''}(-D') = \mathcal{O}_X(-D') \otimes \mathcal{O}_{D''}$.

Proof. Tensoring $0 \to \mathcal{O}_X(-D'') \to \mathcal{O}_X \to \mathcal{O}_{D''} \to 0$ by $\mathcal{O}_X(-D')$ gives $0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X(-D') \to \mathcal{O}_{D''}(-D') \to 0$. Now, $\mathcal{O}_X(-D) \subset \mathcal{O}_X(-D')$ and $\mathcal{O}_D \to \mathcal{O}_D'$ is surjective.

Using the snake lemma proves the result.

We now conclude the proof of classification. Let X be a surface, x_1, \ldots, x_n distinct closed points on X, D a divisor s.t. dim $|D| \ge 3n$.

Lemma 2. There is an effective divisor $D' \in |D|$ s.t. every x_i is on D' as a multiple point.

Proof. As before, we have an exact sequence of abelian sheaves

(5)
$$0 \to \mathcal{O}_X(D) \otimes I_1 \otimes \cdots \otimes I_n \to \mathcal{O}_X(D) \to \bigoplus k(x_i)^3 \to 0$$

where I_i is the kernel of $\mathcal{O}_X \to \mathcal{O}_{X,x_i}/\mathfrak{m}_{X,x_i}^2$: this follows from the fact that $\dim \mathcal{O}_{X,x_i}/m_{X,x_i}^2 = 3$, so $\mathcal{O}_{X,x_i}/m_{x,x_i}^2 \cong k(x_i)^3$ as a skyscraper abelian sheaf supported at x_i . Taking cohomology gives

(6)
$$0 \to H^0(\mathcal{O}_X(D) \otimes I_1 \otimes \cdots \otimes I_n) \to H^0(\mathcal{O}_X(D)) \to \bigoplus k(x_i^3) \to \cdots$$

where the dimension of the second term is $\geq 3n+1$ and that of the third term is 3n. Thus, we obtain a nonzero section of $\mathcal{O}_X(D) \otimes I_1 \otimes \cdots \otimes I_n$: taking its divisor of zeros gives the desired divisor.

Now, if $q = h^1(X, \mathcal{O}_X) = 0$, then since $p_2 = 0$, we get X rational and thus ruled. So we assume that q > 0.

Proposition 1. Through every point $x \in X$ there is a nonsingular rational curve on X.

Proof. If not, then we claim that there are only finitely many smooth rational curves on X. Indeed, let $f: X \to B$ be obtained from the Albanese morphism $\alpha: X \to \text{Alb}(X)$ by Stein factorization (so B is the normalization of $\alpha(X)$ in the rational function field k(X)). If there were infinitely many nonsingular rational curves, then each of them would be contained in a fiber of f (since their image in Alb(X) is a single point). So there are infinitely many points $b \in B$ s.t. $\dim(f^{-1}(b) = 1$, so B cannot be a surface and is instead a nonsingular curve. Since the general fiber of f is integral, and since infinitely many fibers contain at least one nonsingular rational curve, at least one of these closed fibers must be a smooth rational curve. Then the proof of Tsen's theorem tells us that all the fibers of f are smooth rational curves, contradicting the hypothesis. Therefore, there exist only finitely many rational curves on X.

Now fix a projective embedding $X \to \mathbb{P}^n$. For a fixed integer $d \geq 1$, there are only finitely many integral curves E on X with $\deg(E) = d$ and $H^0(N_E) = 0$ where N_E is the normal bundle of E in X. [Since if $\mathcal{C}(d)$ is the Hilbert scheme of curves of degree d on X, $e \in \mathcal{C}(d)$ the closed point corresponding to E, then the tangent space to $\mathcal{C}(d)$ at e is $H^0(N_E) = 0$ and thus e is isolated. Since the Hilbert scheme is projective, there are only finitely many isolated points]. In particular, there are only finitely many curves of degree d satisfying either

 $(E^2) < 0$ or E elliptic and N_E not isomorphic to \mathcal{O}_E . Let \mathcal{F} be the family of all nonsingular curves E on X that are either rational or of the above types. \mathcal{F} is countable. Assume that k is uncountable (postpone the countable case for the moment). A general hyperplane H on \mathbb{P}^n intersects X in a nonsingular connected curve C with $C \notin \mathcal{F}$ (Bertini, \mathcal{F} has only finitely many of degree $= \deg(X)$). $C \setminus \bigcup_{E \in \mathcal{F}} (C \cap E)$ is infinite, so $X \setminus \bigcup_{E \in \mathcal{F}} E$ is infinite.

Let x_1, \ldots, x_q be q distinct points in $X \setminus \bigcup E$. By the previous steps, there is an effective divisor D' s.t. $(K \cdot D') < 0, |K + D'| = \emptyset, \dim |D'| \ge 3q$. Then by the lemma, \exists a divisor $D = \sum n_i E_i$ in |D'| s.t. x_1, \ldots, x_q are multiple points of D. If E_i is a component of D that passes through x_j , then $E_i \notin \mathcal{F}$ (since $x_j \in X \setminus \bigcup E$). So $n_j \ge 2$ is not possible, i.e. $n_j = 1$. We also know that E_i is nonsingular. Since x_j is a multiple point of D_j , it follows that at least 2 components of D must pass through x_j . Since the intersection graph of $\{E_i\}$ has no loops (i.e. it's a tree), there must be at least q + 1 such E_i . Also, $p_a(E_i) \ge 1$ since \mathcal{F} includes all nonsingular rational curves, $\sum p_a(E_i) \ge q + 1$. This contradicts $\sum P_a(E_i) \le q$.

Therefore \exists a nonsingular rational curve through any point of X. Let $\alpha: X \to \operatorname{Alb}(X)$ be the Albanese morphism. It follows as above that for any rational curve C on $\alpha(C)$ is a point $\Longrightarrow \dim \alpha(X) = 1$. Let $X \to B$ be the Stein factorization. The general fiber is integral, and the special fibers contain smooth rational curves \Longrightarrow argument above shows that $X \to B$ is a ruling. This proves the theorem when k is uncountable.

Now, if k is countable, let $k \hookrightarrow k'$ be an extension with k' algebraically closed and uncountable. Then $X' = X \times_k k'$ satisfies the same properties (e.g. \exists an effective divisor D' s.t. $K_{X'} \cdot D < 0$), implying that X' is ruled over B', obtained by Stein factorization for $\alpha : X' \to \alpha(X')$ (α is the Albanese morphism). By functoriality, $B' = B \times_k k'$, and it is easy to check that X is ruled over B. \square