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Recall from last time that we defined the group scheme PicX over k as well 
as the group scheme Pic0 

X , which is the connected component of 0 (i.e. X ) in 
PicX (and is a proper scheme over k). Now, let L  

O
be a line bundle in the class 

corresponding to the universal element. L is a line bundle on X × Pic 0 
X . Choose 

a closed point x of X and let M = L|
 1
{ }× 0 x Pic . Then replace L by L ⊗ (p∗M)−

X 2

so that we get L
|
x Pic0 ∼= O  Pic0 and, for every closed point a  { ∈ Pic 0  the
}× X X X ,
line bundle La =
LX a is algebraically equivalent to 0. Such an L is called a ×{ }
Poincaré line bundle on X × Pic 0 

X . Given a choice of basepoint a, it is unique up 
to isomorphism. Now, note further that the Zariski tangent space at 0 of Pic 0 

X is
 canonically isomorphic to H1(X, OX ) and Pic0

X is a commutative group scheme. 
If it is reduced, then it is an abelian variety. If char(k) = 0, it is automatically 
reduced (by a theorem of Grothendieck-Cartier). 

Theorem 1. Let X be a surface, q = h1(X, X ) its irregularity, s the dimension 
of the Picard 

O
variety of X. Let b1 be the first Betti number = h1

et́(X, Q�). Then
b1 = 2s and Δ = 2q − b1 = 2(q − s) lies between 0 and 2pg, while Δ = 0 if 
char(k) = 0. 

Proof. Note that, for � relatively prime to p = char(k), � >> 0 

)b1 = H1 (Z/�Z
 

et́(X, Z/�Z) = {a ∈ Pic X|� 
(1)

· a = 0}
= {a ∈ Pic 0X|� · a = 0} = (Z/�Z)2s 

where the second equality follows from Kummer theory on 0 → µ� → F  
m

 
→�

Fm → 0, the second from the fact that Pic /Pic is finitely generated, so the
torsion group is finite and � can be chosen larger than the size of the torsion 
group, and the third because Pic 0(X) is the underlying abelian group of the 

0 0 Picard variety of X. The closed points of PicX = (PicX )red, so b1 = 2s.
Now, 

(2)
 Δ = 2q − b1 = 2(q − s) = 2dim TPic 0 ,0 dim T(Pic0X
− )X red,0 

≥ 0


and 

(3) q − s = dim H1(X, OX ) − dim (∩i
∞
=1Ker βi)

where the βi are the Bockstein homomorphisms defined inductively by 

(4) β : H1(X, O ) → H1
1 X (X, OX ), βi : Ker βi−1 

1 

→ coker βi−1 

        0      
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Thus, q − s ≤ dim (∪∞i=1Im βi) ≤ h2(X, OX ) = pg. In characteristic 0, proper
group schemes of finite type are reduced, so  Pic0

X is already an abelian variety. �

0.1. The Albanese Variety. Let X be a smooth projective variety, x0 ∈ X a 
fixed closed point. A pair (A, α) consisting of an abelian variety and a morphism 
α : X → A s.t. αx0 = 0 is called the Albanese variety of X. For every morphism
f : X → B s.t. B is an abelian variety and f(x0) = 0, ∃ a unique homomorphism
of abelian varieties g : A → B s.t. the diagram below commutes.

f 
X B 

�
(5) �

α ���
  

� g ��
A 

Note that a rigidity theorem for abelian varieties implies that any morphism (as 
varieties) g� : A → B is of the form g�(a) = g(a) + b where g : A

 
→ B is a

homomorphism of abelian varieties and b = g�(0) ∈ B. Thus, we can formulate 
the definition without the closed point x0, where we say that there exists a unique 
homomorphism g : A → B s.t. g ◦ α = f . It is clearly unique if it exists.

For existence, let X be a smooth projective variety, and let P (X) be the re­
duced Picard  variety of X, and P (X)∨ its dual abelian variety. Then Pic0

P (X) = 
P (X)∨ (for an abelian variety, Pic 0 is automatically reduced). We have a univer­
sal Poincaré line bundle L on X ×  Pic0

X and therefore on the reduced subscheme
X × P (X). Let µ : X × P (X) → X × P (X) be the switch (y, x) �→ (x, y). µ∗L 
is a line bundle on P (X)  X and therefore comes from the Poincaré bundle on 
P (X) ×  

×
P (X)∨ by a map X → P (X)∨ (by the universal property of Pic 0 

P (X)).
 

��

��

� 

2 

��

One can check that this gives P (X)∨ as the Albanese variety of X using general 
nonsense, so Alb (X) exists and is unique up to unique isomorphism. Further­
more, it is dual to the Picard variety of X. 

Note: If X is a smooth projective curve, then Pic 0(X) is reduced and carries 
a principal polarization, so P (X)∨ ∼= = Pic 0 is the Jacobian of X. ForP (X) ∼ X 
a surface, we showed that the dimension of the Albanese variety is ≤ q, with 
equality holding Δ = 0 (e.g. if char(k) = 0 or if pg = 0).⇔

If k = C, there is an explicit way to see the Albanese variety. We have a map 
i : H1(X, Z) H0(X, Ω1 )∗ defined by �i(γ), ω� = ω. The image of i is a→ X γ 

lattice in H0(X, Ω1 )∗, and the quotient is an abelian variety (a priori a complexX 
torus, but a Riemann form exists). It is Alb (X), and is functorial in X, i.e. 

X �� Y 

(6) αX 

�� ��
αY 

Alb (X) 
∃! 

�� Alb (Y ) 



� � � � � �

����������� 
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It follows that the image of X in Alb (X) generates the abelian variety (else the 
subvariety that X generates inside Alb (X) would satisfy the universal property). 
In particular, if Alb (X) = 0, α(X) is not a point, and if X Y is a surjection,� → 
so is Alb (X) Alb (Y ). Over C, our construction gives us an isomorphism 
α∗ : H1(X, Z)

→
→ H1(Alb (X), Z), so the inverse image under α of any étale 

covering of Alb (X) is connected. All Abelian coverings are obtained in this way. 
For now, assume that char(k) = 0. 

Proposition 1. Let X be a surface, α : X Alb (X) the Albanese map. Sup­→ 
pose α(X) is a curve C. Then C is a smooth curve of genus q, and the fibers of 
α are connected. 

We first prove the following lemma: 

Lemma 1. Suppose α factors as X 
f 

T 
j 

Alb (X) with f surjective. Then→ →
j̃ : Alb (T ) Alb (X) is an isomorphism.→ 

Proof. The functoriality of Alb gives a surjective morphism Alb (X) Alb (T )→
(since X T is surjective), along with a commutative diagram→ 

f 
X �� T 

αT(7) αx 

= 
Alb (X) 

∼
�� Alb (T ) �� Alb (X)

f j̃ 

j̃ f is the identity by the universal property, so j̃ must be an isomorphism. �◦ 


