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ALGEBRAIC SURFACES, LECTURE 1 

LECTURES: ABHINAV KUMAR 

1. Introduction 

This course concerns algebraic surfaces, which for our purposes will be projec­
tive and non-singular over a field k. Usually, we will assume k is algebraically 
closed. The simplest example of algebraic surfaces arise as hypersurfaces in P3 . 
Let S = V (f) for f an irreducible, homogeneous polynomial of degree d: ab­
stractly, S = Proj k[X, Y, Z, W ]/(f). 

d = 1 We can change coordinates so that f = X, giving an isomorphism to the 
rational surface P2 . 

d = 2 Changing coordinates, we can write f = XY − ZW , and obtain an iso­
morphism to the rational ruled surface P1 × P1: the two rulings are given 
by X = λW, λY = Z or X = λZ, λY = W . Note that the partic­
ular surface may have many fewer rational points than P1 × P1 , e.g. 
X2 + Y 2 + Z2 + W 2 = 0 has no rational solutions. The smooth quadric in 
P3 is the Segre embedding of P1 × P1 in P3; it is isomorphic to P2(2 − 1), 
i.e. P2 blown up in 2 points, with the proper transform of the line joining 
them blown down. 

d = 3 Cubic surfaces in P3 are also rational surfaces, realized as P2 blown up 
at 6 points. Each has 27 lines, which can be seen explicitly in the case 
of X3 + Y 3 + Z3 + W 3 = 0: nine of the lines are given by X + ωY = 
0, Z + σW = 0, where ω, σ are cubic roots of unity. Similarly we have the 
lines given by X+ωZ = 0, Y +σW = 0 and X+ωW = 0, Y +σZ = 0. The 
configuration of 27 lines and their intersection points is called the Schäfli 
graph. It is strongly regular, with parameters (27, 16, 10, 8). To see that 
it is rational, choose two non-intersecting lines L, M : taking projections 
gives φL : X → P1, φM : X → P1 = ⇒ φL × φM : X → P1 × P1 which is 
birational by Bezout. 

d = 4 Quartic surfaces in P3 are examples of K3 surfaces (over C, these are 
examples of Calabi-Yau manifolds). This class includes, for instance, 
Kummer surfaces of abelian surfaces, which are classically well-studied. 
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For K3 surfaces, the geometry and moduli are well-known, but the arith­
metic less�  so.�  For instance, the number of parameters for a quartic surface 
in P3 is 4+3 

 − dim GL 4 = 35 − 16 = 19. 
3

 5 These are surfaces of general type. 

2. Rough Plan for the Course 

he goal will be a full classification of surfaces, mostly with proofs. 

(1) Preliminaries: intersection theory, Riemann-Roch, Hodge index theorem 
(2) Birational maps, minimal models 
(3) Classification 

•	 In characteristic 0, we have the Enriques-Castelnuovo-Zariski-Kodaira 
classification of minimal models of surfaces based on Kodaira dimen­
sion, κ(S) = the maximal dimension of the image of S under the 
linear system nKS (−∞ if this linear system is always 0), geometric 
genus pg = h0(S, KS ), and irregularity q = h1(S, OS ). Here, KS is 
divisor class corresponding to the canonical sheaf ω = 2Ω1 . 

κ(S) = −∞: These are ruled  
∧

(e.g. rational) surfaces, i.e. there is a map 
S → C onto a curve with generic fiber smooth of genus 0, and 
have geometric genus 0 (in fact, all their plurigenera are zero). 

κ(S) = 0: There are four possibilities based on combinations of (pg, q): 
(0, 0) are Enriques surfaces, 
(0, 1) are bielliptic or hyperelliptic surfaces, 
(1, 0) are K3 surfaces, and 
(1, 2) are abelian surfaces. 

κ(S) = 1: These are “honest” elliptic surfaces. An elliptic surfaces is one 
with an elliptic fibration, i.e. a map S → C onto a curve with 
generic fiber smooth of genus 1.


κ(S) = 2: These are surfaces of general type.

•	 In characteristic > 0, we have the Bombieri-Mumford classification 

of minimal models, which require the �-adic Betti numbers bi = 
dim Q� H

i(X, Q�) for � = char(k). Note that bi is independent of � 
and agrees with the dimension of H i(X, C) for a smooth complex 

d ≥

T

�

variety X. 
κ(S) = −∞: These are ruled surfaces. By Castelnuovo’s theorem, only ra­

tional if q = p2 = 0 (works in any characteristic). 
κ(S) = 0: There are four possibilities based on combinations of (b1, b2): 

(0, 10) are Enriques surfaces, “classical” if (pg, q) = (0, 0) and 
“non-classical” if (pg, q) = (1, 1). 

(2, 2) are bielliptic or hyperelliptic surfaces if (pg, q) = (0, 1), 
and quasi-hyperelliptic surfaces if (pg, q) = (1, 2). 

(0, 22) are K3 surfaces, and 
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(4, 6) are abelian surfaces. 
κ(S) = 1: These are surfaces with elliptic or quasi-elliptic fibrations: in 

the latter case, the generic fiber has arithmetic genus 1 but has 
a cusp (only exists in characteristics 2, 3, e.g. y2 = x3 + t). 

κ(S) = 2: These are surfaces of general type. 
(4) We will discuss various aspects of the geometry and arithmetic of surfaces 

as they arise, and some singularity theory and other topics according to 
interest. 

2.1. References. 

•	 Beauville, Complex Algebraic Surfaces. 
•	 Badescu, Algebraic Surfaces, 
•	 Barth et al, Compact Complex Surfaces 
•	 Reid, Chapters on Algebraic Surfaces in PCMI vol. 3 
•	 Hartshone, Algebraic Geometry, chapter 5 
•	 Griffiths and Harris, Principles of Algebraic Geometry, chapter 4 
•	 Kodaira, On Compact Complex Analytic Surfaces I,II,III, in the Annals 

of Mathematics 
•	 Bombieri and Mumford, Enriques’ Classification of Surfaces in Charac­

teristic p, Invent. Math 

3. Preliminaries 

Let X = S be a nonsingular, projective algebraic surface over an algebraically 
closed field k. We recall the basic notions of intersection theory on surfaces. 

Definition 1. A curve on S is a closed, integral subscheme of (co)dimension 
1. A divisor is a formal sum of curves with multiplicity, and is effective if the 
coefficients are nonnegative. The set of divisors form a group Div X. For C, D 
distinct curves on X, the intersection multiplicity of C and D at p ∈ C ∩ D 
is mp(C ∩ D) = dim kOp/(f, g) where f is an equation for C in Op and g is 
an equation for D in Op. C and D are called transverse if mp(C, D) = 1, i.e. 
f, g span the maximal ideal. The intersection product between C, D is C D = · 

p∈C∩D mp(C ∩ D), and extends to divisors in the obvious manner. 

Recall that the ideal sheaf defining C is OX (−C). Let OC∩D = OX /(OX (−C)+ 
OX (−D)), a skyscraper sheaf concentrated on C∩D. At each p ∈ C∩D, (OC∩D)p = 
OX /(f, g) so C D = dim H0(X, OC∩D). Recall for short exact sequences of · 
sheaves on X, 0 → F → G → H → 0, taking right-derived functors of Γ (global 
section functor) we get an associated long exact sequence 

(1) 0 → H0(X, F) → H0(X, G) → H0(X, H) → H1(X, F) → · · · 

where the H i measure non-exactness. 
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Theorem 1. If F = M̃ on X = Spec A affine, H0(X, F) = M, H i(X, F) = 0 
for i > 0. 

Theorem 2 (Serre). If X is a projective scheme over A, OX (1) a very ample 
line bundle on X over A, and F a coherent sheaf on X, then each H i(X, F) is 
a f.g. A-module, and ∃n0 dependent on F s.t. ∀i > 0, n ≥ n0, H

i(X, F(n)) = 0. 

Theorem 3 (Grothendieck). Let X be a smooth, Noetherian scheme of dimen­
sion n. Then for F a sheaf of abelian groups on X and i > n, H i(X, F) = 0. 

Definition 2. For F a sheaf on X, χ(F ) = (−1)ihi(X, F) is the Euler-
Poincaré characteristic of F . Note that it is naturally additive for short-exact 
sequences of sheaves. 

Now we return to the setting of surfaces. 

Definition 3. For L, M ∈ Pic X (the group of line bundles), let L · M = 
χ(OX ) − χ(L−1) − χ(M−1) + χ(L−1 ⊗M−1). 

Proposition 1. ( ) defined above is a symmetric, bilinear form on Pic X s.t. if ·
C, D are distinct, irreducible curves on X, OX (C) · OX (D) = C D. That is, we · 
can extend from Div X to Pic X.· 

Proof. Let S ∈ H0(X, OX (C)), t ∈ H0(X, OX (D)) be nonzero sections. We have 

(2) (t,−s) (s,t) 
00 → OX (−C − D) → OX (−C) ⊕OX (−D) → OX → OC∩D → 

is exact (by checking locally). Then the additivity of χ() gives us OX (C) · 
OX C∩D C∩D

to check that it is bilinear. 

Lemma 1. Let C be a nonsingular irreducible curve on X. For L  Pic X, we 
have OX (C) · L  

∈
= deg L|C . 

Proof. Tensoring 0 → OX (−C) → OX → OC → 0 with L−1 gives 

(3)  0 → L−1(−C) → L−1 → L−1 ⊗OC → 0


Taking Euler characteristics of both sequences gives χ(OX ) − χ(OX (−C)) =

χ(OC ) and −χ(L−1 + χ(L−1(−C)) = −χ(L−1|C ). Thus,


(4) OX (C) · L = χ(OC ) − χ(L−1|C ) = deg L−1|C 

by Riemann-Roch on C. � 

Remark. Riemann-Roch for curves says that, if C is a smooth irreducible curve 
and L is a line bundle on C, then χ(L) = χ(OC ) + deg L, or h0(L) − h1(L) = 
deg L + 1 − g. 

(D) = χ(O ) = H0(O ) = C D. Symmetry is obvious for ( ): we need · ·
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Now, for L1, L2, L3 ∈ Pic X, let s(L1, L2, L3) = L1 · (L2 ⊗L3) − L1 ·L2 −L1 ·L3. 
The definition of shows that this is symmetric in L1, L2, L3, and the lemma · 
shows that s(L1, L2, L3) is 0 when L1 = OX (C) for C a nonsingular curve. In 
general, let M be any invertible sheaf, and O(1) a very ample line bundle on 
X. Then ∃n s.t. M ⊗ O(n) = M(n) is generated by global sections. Then 
M ⊗O(n + 1) and O(n + 1 are both very ample. By Bertini’s theorem, we can 
write M = OX (A − B), where A and B are nonsingular irreducible curves. Then 
s(L, M, OX (B)) = 0 (since s is symmetric in its 3 arguments), so that 

(5) L M − L · OX (A) − L · OX (B) = 0 · 

This shows that L · M is linear in L, since L ·OX (A) = deg L|A and L ·OX (B) = 
deg L|B are both linear in L. Similarly, L · M is linear in M , giving the desired 
bilinearity. � 


