A FEW ELEMENTARY FACTS ABOUT ELLIPTIC CURVES

1. INTRODUCTION

In our paper we shall present a number of facts regarding the doubly pe-
riodic meromorphic functions, also known as elliptic functions. We shall
focus on the elliptic functions of order two and, in particular, on the Weier-
stass P-function. The doubly periodic meromorphic functions can be looked
at as meromorphic functions defined on complex tori. This is because, as a
topological space, a complex torus is the quotient of the complex plane over
an integer lattice.

2. PERIODIC FUNCTIONS

Definition 1. A meromorphic function f is said to be periodic if and only
if there exists a nonzero w € C such that f(z +w) = f(2), for all z € C.
The complex number w is called period.

As a first observation, we may say that if w is a period, then any integer
multiple nw is also a period. Also, if there exist two periods wq and wo,
then niwy + nows is also a period, for all ny,ny € Z. Given a meromorphic
function f, define M to be the set of all its periods (including 0). From the
above observations, we deduce that M is a Z-module.

If f is a non-constant meromorphic function, the module M containing
all its periods cannot have a accumulation point, since otherwise f would
be a constant. Therefore each point in M is isolated. In order words, M is
a discrete module.

We have the following theorem regarding the module M:

Theorem 1. If M is the module of periods of a meromorphic function f,
it must have one of the following forms:
o M ={0}.
o M = {nwln € Z}, for some nonzero complez value w.
o M = {njwy + naws|ny,ne € Z}, for some nonnzero complex values
wi,ws € C, whose ratio is not real.

Proof. Let us suppose that M has nonzero elements. Then take a nonzero
element wy of smallest absolute value. This is always possible, since in any
disk or radius < r, there are only finitely many elements of M. Define
A = {nwiln € Z}. We have A C M. If M # A, choose ws the smallest
element (in terms of absolute value) in M — A. First, note that wy/wy cannot
be real, otherwise, choose an integer m such that m < wy/wy < m+ 1. It
follows that |wq — mws| < |w1| which contradicts the minimality of wy.
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Finally, let us prove that M = {njw; +nows|ni,ny € Z}. We remark that
since w1 /we is not real, any complex number can be written uniquely in the
form twq + swsy, where s and ¢ are real numbers. In order to see this clearly, it
is enough to look at wy and wy as vectors in the two-dimensional real vector
space. Since wy and wy are independent as vectors, it becomes obvious why
any complex number can be written uniquely as a linear combination of w1
and we with real coefficients. Now, take an arbitrary element z of M and
write it in the form swq + two, where s and ¢ are real numbers. Choose
integers n; and ng such that |s —ny| < 1/2 and |t — na| < 1/2. Tt follows
easily that |z —njwi; —nows| < 1/2|wi|+1/2|ws| < |ws| (the first inequality is
strict, since wy /wo is nonreal). Because of the way we was chosen, it follows
that = nwy or x = njwi+nowse. Hence, M = {njwi+nowe|ni,ne € Z}. O

3. ELLipTic FUNCTIONS AND UNIMODULAR FORMS

Definition 2. We shall call a meromorphic function f elliptic iff its module
of periods M is a linear linear combination of two periods w1 and ws, such
that w1 /wy is nonreal (i.e. the third case of the previous theorem).

The pair (w1, ws) mentioned above is a basis for the module M. In this
section we shall discuss about the possible bases of a module of periods M.
Suppose (w],w}) is another basis of M. Then

wi = miwi + Njwa,

wé = Mowq + Naow2
and

w1 = m'lwl + n'lwg,

Wy = Mhwy + nhws

Using matrices, we can write

wi w'q . mi1 ni w1 Wi
wh Wy ma N2 wo Wo
wi w1\ _ [ mp n Wi owhh
wy Wo my ny wy W'y

Consequently, we have

w1 w1 . m/l n’l mi ni w1 Wi
Wy  Wo o m'2 n'2 mo N2 W9 W2

We have w3 —wety # 0, because otherwise wy /wo is real, which contradicts
our assumption. It follows that

my nj mi ni\y _ (10
mhy nl mg ng /0 1
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and, since all the entries are integral,
mym
mh

mi N1
ma N2

==+1

Therefore, from (w1, w2) one can obtain (w},w}) via a linear transformation
of determinant 1, which is usually called unimodular transformation. We
have thus seen that any two bases of the same module M are related to one
another by a unimodular transformation.

From all the possible bases of a module, one can choose a particular one,
with certain characteristics which will be called cannonical basis. This fact
is the object of the following

Theorem 2. Given a module M, there exists a basis (w1,w2) such that the
ratio o = w1 /wy has the following properties:

Imo >0

-1/2< Reo < 1/2

o] > 1

If |o| =1, then Re 0 >0

Also, o defined above is uniquely determined by these conditions, up to a
choice of two, four or six corresponding bases.

4. GENERAL PROPERTIES OF ELLIPTIC FUNCTIONS

We shall use a convenient notation: z; = 2o iff 21 — 25 belongs to M (in
other words, iff 21 — zo = njwi + nows, for two integers ny and ny). Let f be
a elliptic function with (w1, ws) as basis of the module of periods. Since f
is doubly-periodic, it is entirely determined by its values on a parallelogram
P, whose vertices are a, a + w1, a + wo and a + w1 + wo. The complex value
a can be chosen arbitrarily.

Theorem 3. If the elliptic funtion f has no poles, it is a constant.

Proof. If f has no poles, it is bounded in a parallelogram P,. Since f is
doubly periodic, it is bounded on the whole complex plane. By Liouville’s
theorem, f must be a constant function. O

As we have seen before, the set of poles of f has no accumulation point. It
follows that in any parallelogram P, there are finitely many poles. When we
shall refer to the poles of f, we shall mean the set of mutually incongruent
poles.

Theorem 4. The sum of residues of an elliptic function f is zero.

Proof. Choose a € C such that the parallelogram P, does not contain any
pole of f. Consider the boundary 9P, of P, traced in the positive sense.
Then the integral



equals the sum of residues of f. But the sum equals 0, since the integrals
over the opposite sides of the parallelogram cancel each other. O

A simple corollary ! of this theorem is that an elliptic function cannot
have a single simple pole, otherwise, the sum of residues would not equal 0.

Theorem 5. A nonconstant elliptic function f has the same number of poles
as it has zeroes. (Every pole or zero is counted according to its multiplicity)

Proof. We may consider the function f’/f which has simple poles wherever
f has a pole or a zero. The residue of a pole « of f//f equals its multiplicity
in f if « is a zero of f, and minus its multiplicity in f, if « is a pole of f.
Applying now theorem 4 to the function f’/f, we get the desired result. O

Since f(z) —c and f(z) have the same number of poles, we conclude that
they must have the same number of zeroes.

Definition 3. Given an elliptic function f, the number of mutually incon-
gruent roots of f(z) = c is called the order of the elliptic function.

Obviously, the order does not depend on the choice of c.

Theorem 6. Suppose the nonconstant elliptic function f has the zeroes
ay, - ,an and poles by,--- ,b, (multiple roots and poles appear multiple
times). Then ay + -+ ap =by + -+ + b, (mod M ).

Proof. Consider all a; and b; in the parallelogram P, for some a. We consider
the following integral on OP,:

1 zf'(2)

2mi Jop, f(2)

Given the properties of the poles and zeroes of f’/f mentioned above, we

deduce that f has a zero (or a pole) at ¢, of order k € Z~g, iff zf'/f has a

simple pole at ¢t with residue nt (or —nt). It follows that the integral equals

a1+ ---+a, —by —---—b,. Now, we must prove that the integral is in M.
For this purpose, we write the integral on the pairs of two opposite sides:

L </a+w1 zf’(z) 5 /a—l—wl—i—wg zf’(z) dz) _ _—w2 a+wi f’(z) "

dz

271 f(Z) —+wo f(Z) 27 a f(Z)
Also,
—wy [T f(2) . —we 1
i fe T i Jop 0™

where D is the curve given by f(z) when z varies from a to a+w;. ﬁ Jap %dw
is an integer (=the winding number with respect to 0). Taking into account
both pairs of opposite sides of P,, we get the desired result. O

1L atin corona "garland” > diminutive corolla > corollarium ”gratuity” > English
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5. THE WEIERSTASS P-FUNCTION

The simplest example of an elliptic function is of order 2. As we have
seen before, there is no elliptic function of order 1. An elliptic function of
degree 2 can have either one pole of degree 2 or two distinct simple poles.
We shall analyse, following Weierstass, the case of an elliptic function with
a double pole.

We may place the pole at the origin and consider the coefficient of 22
as being 1 (translations and multiplications by constants do not change
essential properties of elliptic functions). If we consider f(z)-f(-z) we get
a elliptic function that has no singular part. (The function f(z) — f(—2)
could only have a single simple pole at 0, but this is impossible). Hence,
f(2) = f(—=) is constant and setting z = w1 /2, we get that this constant is
zero. Therefore, f(z) = f(—z) and we can write

P(2) = 272 4 ap + a1z + ...

We may suppose that ag = 0, because adding/substracting a constant from
f is irrelevant. What we get is the so called Weierstass P-function. This
elliptic function can be written as

(1) P(2) =22 +a12® +agz + ...

The existence of a elliptic function of order 2 has not yet been proven. We
shall prove that the Weierstrass P-function is uniquely determined for a
basis (w,ws), being given by the formula:

1 1 1
2) PE) =5+ (=
3 ()

where the summation is over all w = njwi + nows, w # 0. We shall prove
first that this sum is convergent. For every |w| > 2|z|, we have
1 1

(z—w)? w?

22w — 2)
2

10|z|
T |wl?

w2(z — w)

This is because |2w — z| < 5/2|w| and |z — w| > |w| — |2| > |w]|/2.
We conclude that in order for the sum (2) to converge, it is enough to
prove that the sum

1
Zw<00

w#0

Also, since wq /we is not real [njwy + nows| = |wo||ni1wi/we + na| > ¢|ny| for

some positive real constant ¢ (for any integers mq,n9). Similarly, we find

a constant d such that |njwi + nows| > d|nsl, for any integers ni,ny. In

conclusion, |njwi + naws| > k(|n1| + |ne|), where k = ¢d/(c + d) > 0. Since

there are exactly 4n ordered pairs (ni1,ns) of integers such that |ni|+ |na| =
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n, we have

1 1 =1
S <
3 3 2
= |w] 4k3 —n

We also need to prove that P(z) = % + > w0 (ﬁ - %) has periods
w1y and wo. We denote, for this purpose

(3) f(2)=%+z<ﬁ_%>

w#0

Since the series is absolutely convergent, we may differentiate term by term:

/ 2 2 1
N N e,

w#0

This series is also absolutely convergent, since if |w| > 2|z|, we have
1 1
> <163 P
w w

(z —w)?

and we deduce that (3) converges absolutely. Consequently, f(z+wi)— f(2)
and f(z + wa) — f(z) are constant functions. By definition, f is even and,
therefore, setting z = —w1/2 and z = —wy/2 we get that the constants are
0. Therefore, f(z +w1) = f(z) and f(z + w2) = f(2), for all z € C. Hence,
we proved that f is elliptic. If P has the form in (1) and is doubly periodic,
with periods wy and ws, it follows that P — f has no singular part, and is
therefore constant. Since both P and f have no constant term (i.e. the
coefficient of 2" is 0), it follows that P = f. Hence, we deduce that

and also that

Pls) = -2} ﬁ

6. THE FUNCTION ((z)

Because P has no residues, it is the derivative of a function -((z), where

1 1 1 z
=3+2 (554 5)

w#0
In order to prove that this series converges, we note that
1 1 z 22

z—w w w? Wz —w)



Hence, if |w| > 2|z|,

1 ‘ z ‘ 9 2
2 D e R D
_ 2(» _ - 3
Slrmw w?(z — w) |w]
and, consequently, the series converges absolutely.
Since f(z +w;) = f(z), for i = 1,2 it follows that ((z + w;) = ¢(2) + n;,
for i = 1,2, where 7; are complex constants. These complex constants have
a beautiful property which comes from the fact that

1

1 z
+—-—+—
woow

4 — dz=1

() o <

We prove first (4). If we look at (2), we deduce that
C(z):z_l—%zs—%z5+...

Now, if we evaluate the integral on two opposite sides of the parallelogram

P,, we get
1 a+wi atwi+tw2 —1ws
i ([ s [ ) =

Integrating similarly on the other pair of opposide sides, we get that
“Mew1 w2
27 27

and, finally,
Mmwz — Nowr = 2mi

which is called Legendre’s relation.

7. THE DIFFERENTIAL EQUATION CORRESPONDING TO P

Using the definition of {(z), we have the following identity
1 1 z 22 23

2—w  w  w? 4

Consequently, we can write

5l
OEES yrR s
o k=2

where by G we mean

1
(5) G = Z L
w#0

We note that ((z) has no terms of the form z
(and ¢ is odd). Differentiating (5), we get
1 o0
P=5+) (2k—1)Gpz? 2
=
7

2n gince P is an even function



Writing only the significant parts of the following functions, we have:

1
P(x) =5+ 3Go2® +5G32" + - -

2
P(z) = — =3 +6Gaz+ 20G32% + - -

424G,

/ 2 _
4 36G
3 _ 2
473(2) —;+7+60G3+“‘
60G
60G2P(z) = Z22+o+~.

It follows that
P'(2)? — 4P(2) + 60G2P(2) = —140G3 + - - -

The left side of the last identity is an elliptic function and it does not have
any singular part. Therefore, it must equal a constant. Setting z = 0, we
get that the constant is —140G3. Hence

P'(2)? — 4P(2)3 + 60GoP(2) 4 140G3 = 0
If we set go = 60G5 and g3 = 140G3, we get
P'(2)? = 4P(2)> — 92P(2) — g3

Provided that e;, es and e3 are the complex roots of the polynomial
493 — goy — g3, we can write

P'(2)? = 4(P(2) — e1)(P(2) — e2)(P(2) — e3)

Because P is even and periodic, we have P(w; — z) = P(z). It follows that
P'(w1 — z) = P'(2). Hence P’'(w1/2) = 0. Similarly, P’(w2/2) = 0. We have
also, P'(w1 + wy — z) = P'(z), and therefore, P’((w1 + w2)/2) = 0. Since P’
has only one pole (of order 3), it must have exactly three roots (counting
multiplicity). On the other hand, the complex numbers wy/2, wo/2 and
(w1 +w2)/2 are mutually incongruent. Therefore, they are the three distinct
roots of P’.

For every e; there exists d; such that P(d;) = e; (this equation in fact has a
double solutions, as we shall see below). Also, d; are roots of P’. Therefore,
if we apply P on the set of roots of P’ (a set which has three elements, w1 /2,
we/2 and (w1 + w2)/2), we get the whole set {e1,e2,e3}. Consequently, we
may set P(w1/2) = e; and P(w2/2) = ey and P((w1 + w2)/2) = e3.

Every root of P —¢; is also a root of P’. If, for instance, e; = es, then the
root di of P — e; has multiplicity at least 2 in P’ and, therefore, multiplicity
at least 3 in P — ey, which is impossible for an elliptic curve of order 2. In
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conclusion, we derive an important observation, namely that all roots e; are
distinct.
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