
A FEW ELEMENTARY FACTS ABOUT ELLIPTIC CURVES

1. Introduction

In our paper we shall present a number of facts regarding the doubly pe-
riodic meromorphic functions, also known as elliptic functions. We shall
focus on the elliptic functions of order two and, in particular, on the Weier-
stass P-function. The doubly periodic meromorphic functions can be looked
at as meromorphic functions defined on complex tori. This is because, as a
topological space, a complex torus is the quotient of the complex plane over
an integer lattice.

2. Periodic functions

Definition 1. A meromorphic function f is said to be periodic if and only
if there exists a nonzero ω ∈ C such that f(z + ω) = f(z), for all z ∈ C.
The complex number ω is called period.

As a first observation, we may say that if ω is a period, then any integer
multiple nω is also a period. Also, if there exist two periods ω1 and ω2,
then n1ω1 + n2ω2 is also a period, for all n1, n2 ∈ Z. Given a meromorphic
function f , define M to be the set of all its periods (including 0). From the
above observations, we deduce that M is a Z-module.

If f is a non-constant meromorphic function, the module M containing
all its periods cannot have a accumulation point, since otherwise f would
be a constant. Therefore each point in M is isolated. In order words, M is
a discrete module.

We have the following theorem regarding the module M:

Theorem 1. If M is the module of periods of a meromorphic function f ,
it must have one of the following forms:

• M = {0}.
• M = {nω|n ∈ Z}, for some nonzero complex value ω.
• M = {n1ω1 + n2ω2|n1, n2 ∈ Z}, for some nonnzero complex values

ω1, ω2 ∈ C, whose ratio is not real.

Proof. Let us suppose that M has nonzero elements. Then take a nonzero
element ω1 of smallest absolute value. This is always possible, since in any
disk or radius ≤ r, there are only finitely many elements of M . Define
A = {nω1|n ∈ Z}. We have A ⊂ M . If M 6= A, choose ω2 the smallest
element (in terms of absolute value) in M−A. First, note that ω1/ω2 cannot
be real, otherwise, choose an integer m such that m ≤ ω1/ω2 < m + 1. It
follows that |ω1 − mω2| < |ω1| which contradicts the minimality of ω1.
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Finally, let us prove that M = {n1ω1 +n2ω2|n1, n2 ∈ Z}. We remark that
since ω1/ω2 is not real, any complex number can be written uniquely in the
form tω1+sω2, where s and t are real numbers. In order to see this clearly, it
is enough to look at ω1 and ω2 as vectors in the two-dimensional real vector
space. Since ω1 and ω2 are independent as vectors, it becomes obvious why
any complex number can be written uniquely as a linear combination of ω1

and ω2 with real coefficients. Now, take an arbitrary element x of M and
write it in the form sω1 + tω2, where s and t are real numbers. Choose
integers n1 and n2 such that |s − n1| < 1/2 and |t − n2| < 1/2. It follows
easily that |x−n1ω1−n2ω2| < 1/2|ω1|+1/2|ω2| ≤ |ω2| (the first inequality is
strict, since ω1/ω2 is nonreal). Because of the way ω2 was chosen, it follows
that x = nω1 or x = n1ω1+n2ω2. Hence, M = {n1ω1+n2ω2|n1, n2 ∈ Z}. �

3. Elliptic Functions and Unimodular Forms

Definition 2. We shall call a meromorphic function f elliptic iff its module
of periods M is a linear linear combination of two periods ω1 and ω2, such
that ω1/ω2 is nonreal (i.e. the third case of the previous theorem).

The pair (ω1, ω2) mentioned above is a basis for the module M . In this
section we shall discuss about the possible bases of a module of periods M .
Suppose (ω′

1, ω
′
2) is another basis of M . Then

ω′
1 = m1ω1 + n1ω2,

ω′
2 = m2ω1 + n2ω2

and

ω1 = m′
1ω1 + n′

1ω2,

ω2 = m′
2ω1 + n′

2ω2

Using matrices, we can write
(

ω′
1 ω′

1

ω′
2 ω′

2

)

=

(

m1 n1

m2 n2

)(

ω1 ω1

ω2 ω2

)

(

ω1 ω1

ω2 ω2

)

=

(

m′
1 n′

1

m′
2 n′

2

)(

ω′
1 ω′

1

ω′
2 ω′

2

)

Consequently, we have

(

ω1 ω1

ω2 ω2

)

=

(

m′
1 n′

1
m′

2 n′
2

)(

m1 n1

m2 n2

)(

ω1 ω1

ω2 ω2

)

We have ω1ω2−ω2ω1 6= 0, because otherwise ω1/ω2 is real, which contradicts
our assumption. It follows that

(

m′
1 n′

1
m′

2 n′
2

)(

m1 n1

m2 n2

)

=

(

1 0
0 1

)
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and, since all the entries are integral,
∣

∣

∣

∣

m′
1 n′

1
m′

2 n′
2

∣

∣

∣

∣

=

∣

∣

∣

∣

m1 n1

m2 n2

∣

∣

∣

∣

= ±1

Therefore, from (ω1, ω2) one can obtain (ω′
1, ω

′
2) via a linear transformation

of determinant 1, which is usually called unimodular transformation. We
have thus seen that any two bases of the same module M are related to one
another by a unimodular transformation.

From all the possible bases of a module, one can choose a particular one,
with certain characteristics which will be called cannonical basis. This fact
is the object of the following

Theorem 2. Given a module M , there exists a basis (ω1, ω2) such that the
ratio σ = ω1/ω2 has the following properties:

• Im σ > 0
• -1/2 ≤ Re σ ≤ 1/2
• |σ| ≥ 1
• If |σ| = 1, then Re σ ≥ 0

Also, σ defined above is uniquely determined by these conditions, up to a
choice of two, four or six corresponding bases.

4. General Properties of Elliptic Functions

We shall use a convenient notation: z1 ≡ z2 iff z1 − z2 belongs to M (in
other words, iff z1− z2 = n1ω1 +n2ω2, for two integers n1 and n2). Let f be
a elliptic function with (ω1, ω2) as basis of the module of periods. Since f
is doubly-periodic, it is entirely determined by its values on a parallelogram
Pa whose vertices are a, a + ω1, a + ω2 and a + ω1 + ω2. The complex value
a can be chosen arbitrarily.

Theorem 3. If the elliptic funtion f has no poles, it is a constant.

Proof. If f has no poles, it is bounded in a parallelogram Pa. Since f is
doubly periodic, it is bounded on the whole complex plane. By Liouville’s
theorem, f must be a constant function. �

As we have seen before, the set of poles of f has no accumulation point. It
follows that in any parallelogram Pa there are finitely many poles. When we
shall refer to the poles of f , we shall mean the set of mutually incongruent
poles.

Theorem 4. The sum of residues of an elliptic function f is zero.

Proof. Choose a ∈ C such that the parallelogram Pa does not contain any
pole of f . Consider the boundary ∂Pa of Pa traced in the positive sense.
Then the integral

1

2πi

∫

∂Pa

f(z)
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equals the sum of residues of f. But the sum equals 0, since the integrals
over the opposite sides of the parallelogram cancel each other. �

A simple corollary 1 of this theorem is that an elliptic function cannot
have a single simple pole, otherwise, the sum of residues would not equal 0.

Theorem 5. A nonconstant elliptic function f has the same number of poles
as it has zeroes. (Every pole or zero is counted according to its multiplicity)

Proof. We may consider the function f ′/f which has simple poles wherever
f has a pole or a zero. The residue of a pole α of f ′/f equals its multiplicity
in f if α is a zero of f , and minus its multiplicity in f , if α is a pole of f .
Applying now theorem 4 to the function f ′/f , we get the desired result. �

Since f(z)− c and f(z) have the same number of poles, we conclude that
they must have the same number of zeroes.

Definition 3. Given an elliptic function f , the number of mutually incon-
gruent roots of f(z) = c is called the order of the elliptic function.

Obviously, the order does not depend on the choice of c.

Theorem 6. Suppose the nonconstant elliptic function f has the zeroes
a1, · · · , an and poles b1, · · · , bn (multiple roots and poles appear multiple
times). Then a1 + · · · + an ≡ b1 + · · · + bn (mod M).

Proof. Consider all ai and bi in the parallelogram Pa for some a. We consider
the following integral on ∂Pa:

1

2πi

∫

∂Pa

zf ′(z)

f(z)
dz

Given the properties of the poles and zeroes of f ′/f mentioned above, we
deduce that f has a zero (or a pole) at t, of order k ∈ Z>0, iff zf ′/f has a
simple pole at t with residue nt (or −nt). It follows that the integral equals
a1 + · · · + an − b1 − · · · − bn. Now, we must prove that the integral is in M .
For this purpose, we write the integral on the pairs of two opposite sides:

1

2πi

(
∫

a+ω1

a

zf ′(z)

f(z)
dz −

∫

a+ω1+ω2

a+ω2

zf ′(z)

f(z)
dz

)

=
−ω2

2πi

∫

a+ω1

a

f ′(z)

f(z)
dz

Also,

−ω2

2πi

∫

a+ω1

a

f ′(z)

f(z)
dz =

−ω2

2πi

∫

∂D

1

w
dw

where D is the curve given by f(z) when z varies from a to a+ω1.
1

2πi

∫

∂D

1
w

dw
is an integer (=the winding number with respect to 0). Taking into account
both pairs of opposite sides of Pa, we get the desired result. �

1Latin corona ”garland” > diminutive corolla > corollarium ”gratuity” > English
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5. The Weierstass P-function

The simplest example of an elliptic function is of order 2. As we have
seen before, there is no elliptic function of order 1. An elliptic function of
degree 2 can have either one pole of degree 2 or two distinct simple poles.
We shall analyse, following Weierstass, the case of an elliptic function with
a double pole.

We may place the pole at the origin and consider the coefficient of z−2

as being 1 (translations and multiplications by constants do not change
essential properties of elliptic functions). If we consider f(z)-f(-z) we get
a elliptic function that has no singular part. (The function f(z) − f(−z)
could only have a single simple pole at 0, but this is impossible). Hence,
f(z) − f(−z) is constant and setting z = ω1/2, we get that this constant is
zero. Therefore, f(z) = f(−z) and we can write

P(z) = z−2 + a0 + a1z
2 + ...

We may suppose that a0 = 0, because adding/substracting a constant from
f is irrelevant. What we get is the so called Weierstass P-function. This
elliptic function can be written as

P(z) = z−2 + a1z
2 + a2z

4 + ...(1)

The existence of a elliptic function of order 2 has not yet been proven. We
shall prove that the Weierstrass P-function is uniquely determined for a
basis (ω1, ω2), being given by the formula:

P(z) =
1

z2
+

∑

ω 6=0

(

1

(z − ω)2
−

1

ω2

)

(2)

where the summation is over all ω = n1ω1 + n2ω2, ω 6= 0. We shall prove
first that this sum is convergent. For every |ω| > 2|z|, we have

∣

∣

∣

∣

1

(z − ω)2
−

1

ω2

∣

∣

∣

∣

=

∣

∣

∣

∣

z(2ω − z)

ω2(z − ω)2

∣

∣

∣

∣

≤
10|z|

|ω|3

This is because |2ω − z| < 5/2|ω| and |z − ω| ≥ |ω| − |z| ≥ |ω|/2.
We conclude that in order for the sum (2) to converge, it is enough to

prove that the sum

∑

ω 6=0

1

|ω|3
< ∞

Also, since ω1/ω2 is not real |n1ω1 + n2ω2| = |ω2||n1ω1/ω2 + n2| ≥ c|n1| for
some positive real constant c (for any integers n1, n2). Similarly, we find
a constant d such that |n1ω1 + n2ω2| ≥ d|n2|, for any integers n1, n2. In
conclusion, |n1ω1 + n2ω2| ≥ k(|n1| + |n2|), where k = cd/(c + d) ≥ 0. Since
there are exactly 4n ordered pairs (n1, n2) of integers such that |n1|+ |n2| =
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n, we have

∑

ω 6=0

1

|ω|3
<

1

4k3

∞
∑

1

1

n2
.

We also need to prove that P(z) = 1
z2 +

∑

ω 6=0

(

1
(z−ω)2 − 1

ω2

)

has periods

ω1 and ω2. We denote, for this purpose

f(z) =
1

z2
+

∑

ω 6=0

(

1

(z − ω)2
−

1

ω2

)

(3)

Since the series is absolutely convergent, we may differentiate term by term:

f ′(z) = −
2

z3
−

∑

ω 6=0

2

(z − ω)3
= −2

∑

ω

1

(z − ω)3

This series is also absolutely convergent, since if |ω| > 2|z|, we have

∑

ω

∣

∣

∣

∣

1

(z − ω)3

∣

∣

∣

∣

≤ 16
∑

ω

1

|ω|3

and we deduce that (3) converges absolutely. Consequently, f(z+ω1)−f(z)
and f(z + ω2) − f(z) are constant functions. By definition, f is even and,
therefore, setting z = −ω1/2 and z = −ω2/2 we get that the constants are
0. Therefore, f(z + ω1) = f(z) and f(z + ω2) = f(z), for all z ∈ C. Hence,
we proved that f is elliptic. If P has the form in (1) and is doubly periodic,
with periods ω1 and ω2, it follows that P − f has no singular part, and is
therefore constant. Since both P and f have no constant term (i.e. the
coefficient of z0 is 0), it follows that P = f . Hence, we deduce that

P(z) =
1

z2
+

∑

ω 6=0

(

1

(z − ω)2
−

1

ω2

)

and also that

P ′(z) = −2
∑

ω

1

(z − ω)3

6. The function ζ(z)

Because P has no residues, it is the derivative of a function -ζ(z), where

ζ(z) =
1

z
+

∑

ω 6=0

(

1

z − ω
+

1

ω
+

z

ω2

)

In order to prove that this series converges, we note that

1

z − ω
+

1

ω
+

z

ω2
=

z2

ω2(z − ω)
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Hence, if |ω| > 2|z|,

∑

ω 6=0

∣

∣

∣

∣

1

z − ω
+

1

ω
+

z

ω2

∣

∣

∣

∣

=
∑

∣

∣

∣

∣

z

ω2(z − ω)

∣

∣

∣

∣

≤ |z|2
∑ 2

|ω|3

and, consequently, the series converges absolutely.
Since f(z + ωi) = f(z), for i = 1, 2 it follows that ζ(z + ωi) = ζ(z) + ηi,

for i = 1, 2, where ηi are complex constants. These complex constants have
a beautiful property which comes from the fact that

1

2πi

∫

∂Pa

ζ(z)dz = 1(4)

We prove first (4). If we look at (2), we deduce that

ζ(z) = z−1 −
a1

3
z3 −

a2

5
z5 + · · ·

Now, if we evaluate the integral on two opposite sides of the parallelogram
Pa, we get

1

2πi

(
∫

a+ω1

a

ζ(z)dz −

∫

a+ω1+ω2

a+ω2

ζ(z)dz

)

=
−η1ω2

2πi

Integrating similarly on the other pair of opposide sides, we get that

−η2ω1

2πi
−

−η1ω2

2πi
= 1

and, finally,

η1ω2 − η2ω1 = 2πi

which is called Legendre′s relation.

7. The Differential equation corresponding to P

Using the definition of ζ(z), we have the following identity

1

z − ω
+

1

w
+

z

ω2
= −

z2

ω3
−

z3

ω4
− · · ·

Consequently, we can write

ζ(z) =
1

z
+

∞
∑

k=2

Gkz
2k−1

where by Gk we mean

Gk =
∑

ω 6=0

1

ω2k
(5)

We note that ζ(z) has no terms of the form z2n since P is an even function
(and ζ is odd). Differentiating (5), we get

P =
1

z2
+

∞
∑

k=2

(2k − 1)Gkz2k−2
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Writing only the significant parts of the following functions, we have:

P(z) =
1

z2
+ 3G2z

2 + 5G3z
4 + · · ·

P ′(z) = −
2

z3
+ 6G2z + 20G3z

3 + · · ·

P ′(z)2 =
4

z6
−

24G2

z2
− 80G3 + · · ·

4P(z)3 =
4

z6
+

36G2

z2
+ 60G3 + · · ·

60G2P(z) =
60G2

z2
+ 0 + · · ·

It follows that

P ′(z)2 − 4P(z)3 + 60G2P(z) = −140G3 + · · ·

The left side of the last identity is an elliptic function and it does not have
any singular part. Therefore, it must equal a constant. Setting z = 0, we
get that the constant is −140G3. Hence

P ′(z)2 − 4P(z)3 + 60G2P(z) + 140G3 = 0

If we set g2 = 60G2 and g3 = 140G3, we get

P ′(z)2 = 4P(z)3 − g2P(z) − g3

Provided that e1, e2 and e3 are the complex roots of the polynomial
4y3 − g2y − g3, we can write

P ′(z)2 = 4(P(z) − e1)(P(z) − e2)(P(z) − e3)

Because P is even and periodic, we have P(ω1 − z) = P(z). It follows that
P ′(ω1 − z) = P ′(z). Hence P ′(ω1/2) = 0. Similarly, P ′(ω2/2) = 0. We have
also, P ′(ω1 + ω2 − z) = P ′(z), and therefore, P ′((ω1 + ω2)/2) = 0. Since P ′

has only one pole (of order 3), it must have exactly three roots (counting
multiplicity). On the other hand, the complex numbers ω1/2, ω2/2 and
(ω1 +ω2)/2 are mutually incongruent. Therefore, they are the three distinct
roots of P ′.

For every ei there exists di such that P(di) = ei (this equation in fact has a
double solutions, as we shall see below). Also, di are roots of P ′. Therefore,
if we apply P on the set of roots of P ′ (a set which has three elements, ω1/2,
ω2/2 and (ω1 + ω2)/2), we get the whole set {e1, e2, e3}. Consequently, we
may set P(ω1/2) = e1 and P(ω2/2) = e2 and P((ω1 + ω2)/2) = e3.

Every root of P −ei is also a root of P ′. If, for instance, e1 = e2, then the
root d1 of P−e1 has multiplicity at least 2 in P ′ and, therefore, multiplicity
at least 3 in P − e1, which is impossible for an elliptic curve of order 2. In
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conclusion, we derive an important observation, namely that all roots ei are
distinct.
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